GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

BASIC ELECTRONICS (Code: 3330301)

Diploma Programmes in which this course is offered	Semester in which offered	
Biomedical Engineering	Third Sem	

1. RATIONALE

All biomedical instruments are made up of electronic circuits. Acquiring the practical skills and cognitive skills of basic electronics will go a long way in maintaining many of the biomedical equipment. Hence the construction and working of the basic electronic components such as the diodes, transistors and their applications are included in this course. By undertaking this course, the student will be able to maintain the basic electronic circuits of biomedical equipment.

2. COMPETENCY ('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain the electrical and electronic circuits of biomedical equipment.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme							
((In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks			ctical rks	Total Marks
	1	I	(12 1 1)			1410	II KS	Marks		
L	T	P	C	ESE	PA	ESE	PA			
4	0	4	8	70	30	40	60	200		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	('Course Outcomes' in Cognitive	r
	Domain according to NBA	
	terminology)	
Unit – I	1a. State Ohm's Law, Faraday's laws,	2.1 DC Fundamentals, Ohm's Law,
Basics of	Lenzs Laws.	Faraday's laws, Lenz' Laws.
Electricity	1b. Differentiate between cycle,	2.2 Dynamically and statically induced
	frequency, periodic time,	emf
	amplitude, angular velocity and	2.3 Self and mutual inductance and
	frequency of AC circuits 1c. Distinguish between dynamically	coefficient of coupling 2.4 Cycle, Frequency, Periodic time,
	and statically induced emf.	Amplitude, Angular velocity or
	1d. Discriminate between self, mutual	frequency with reference to
	inductance and coefficient of	alternating emf and current
	coupling.	2.5 Voltage and current in series and
	1e. Describe the working principle of	
	transformer with sketches.	2.6 Single phase transformer
TI '4 TT	20 Dietie swich hetsses intrinsi	0.1 Interior and automate according 3
Unit – II	2a. Distinguish between intrinsic and extrinsic semiconductor	2.1 Intrinsic and extrinsic ssemiconductor
Semiconductor Diode and its	materials	materials: P type, N type semiconductors
Applications	2b.Describe working of PN	2.2 P-N junction diode:
Applications	junction diodes	2.3 Series and parallel diode configuration
		2.4 half-wave, full-wave, bridge rectifier
	and full wave bridge rectifier	and PIV
	along with sketches	3.1 average D.C. current, voltage, ratio of
		rectification and ripple factor
	2d.Justify the need for different	2.5 Need of Filters
	types of filters. 2e. Differentiate between C, L, LC	2.6 C, L, LC, π filters2.7 Simple capacitor filter and induction
	and π filters	filter
		2.8 Clamper and clipper circuits
	doublers and multipliers	2.9 Voltage doublers and multipliers
Unit– III		3.2 Zener diode performance
Other	applications of zener diode,	3.3 Photo diode, photovoltaic cell,
Semiconductor	3b. Differentiate between LDR,	phototransistor, LDR, LED
Devices	photo diode, photo transistor, LED,	3.4 Optocoupler, opto- isolator3.5 Seven Segment display
	3c. Discriminate the working of the	5.3 Seven Segment display
	optocoupler and opto-isolator	
	3d. Explain working principle of the	
	seven segment display.	
Unit – IV	4a. Discriminate between PNP and	5.1 PNP and NPN transistors,
Transistor	NPN transistors	conduction through transistor
		5.2 Leakage current, relationship between α and β
	4b. Compare the working of CB,	5.3 Transistor configuration &
	CE and CC transistors.	characteristics for CB,CE,CC
	4c. Describe the load line and	5.4 Load line and biasing methods of
	biasing methods of the transistor	transistor

Unit	Major Learning Outcomes	Topics and Sub-topics
Cint	('Course Outcomes' in Cognitive Domain according to NBA terminology)	
Unit – V Voltage and power amplifiers	5a. Justify the need of voltage amplifier5b. Select the voltage amplifier for a particular application	-
	5c. Explain the need of power amplifier5d. Select the power amplifier for a particular application	 5.3 Power amplifier: Class A amplifier: Series fed and transformer-coupled amplifier 5.4 Class B push-pull Amplifier Operation 5.5 Amplifier Distortion
Unit – VI Regulated Power Supply	6a.Justify the need of regulated DC power supply	6.1 Regulated power supply (module level), Shunt voltage regulator (module level)
	6a.Explain the working of different types of voltage regulator circuits	 6.2 Transistorized series voltage regulator (basic and with feedback, without derivation) 6.3 3- Terminal Fixed/variable voltage regulator: 78xx, 79xx, LM317
	6b. Explain working of SMPS	6.4 Switch mode power supply(SMPS)
	6c. Differentiate the working principle of the online and offline UPS	6.5 Uninterruptible power supply(UPS): online and offline

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Basics of Electricity	08	4	8	0	12
II	Semiconductor Diodes and its applications	08	6	6	0	12
III	Other semiconductor Devices	10	6	4	4	14
IV	Transistor	10	2	6	0	08
V	Transistor Amplifier	12	2	8	4	14
VI	Regulated Power Supply	08	4	4	2	10
	Total	56	24	36	10	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in** *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain

		Practical Exercises	Hrs.	
S. No.	Unit	('Course Outcomes' in Psychomotor Domain according to NBA	required	
	No.	terminology)	1	
1	Ţ	Measure amplitude and frequency of sinusoidal wave using the	02	
1	1	C.R.O.		
2	I	Measure AC and DC voltage and current.	02	
3	I	Identify phase, neutral and earthing terminals.	1/2	
4	I	Identify different types of capacitors and inductors	02	
5	I	Generate and observe various signals of function generator and measure the frequency and amplitude.	01	
6	I	Check the continuity using Multi-meter.	1/2	
7	I	Identify various active and passive components.	02	
8	II	Test the performance of the PN diode.	02	
9	II	Build /Test the positive and negative clipping using CRO.	02	
10	II	Build/ Test the positive and negative clamping using CRO.	02	
11	III	Test the performance of the zener diode.	02	
12	III	Test the performance of the LED.	02	
13	III	Test the performance of the photodiode.	02	
14	III	Build/Test Half-wave rectifier.	04	
15	III	Build /Test full-wave rectifier with capacitor filter.		
16	III	Build /Test Bridge rectifier with choke filter.	04	
17	III	Test the performance of the LDR	02	
18	IV	Test the performance of the CB configuration.	02	
19	IV	Test the performance of the CE configuration.	02	
20	IV	Test CE amplifier and obtain the frequency response.	02	
21	V	Build/test CB amplifier	02	
22	V	Build/test CE amplifier	02	
23	V	Build/test CC amplifier	02	
24	IV	Test Darlington pair.	02	
25	VI	Build /Test Bridge voltage regulator circuits	02	
26	VI	Determine the values of the given resistors and capacitors using	02	
20	V 1	color coding and verify by multi-meter.		
27	VI	Test the performance of the SMPS.	02	
Total 56				

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Collect various electronics components and make a show case component wise.
- ii. Collect specifications, Picture of electronics components from internet and present in class room.
- iii. Build DC power supply.
- iv. Visit nearby industry which manufactures any electronics component covered in this course.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- A. Class Test
- B. Assignment
- C. Seminar/Symposium
- D. Mini Project
- E. Progressive Assessment of lab activity on regular basis (i.e. along with the practical)

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Electronic devices and Circuits	Mehta, V. K.	S.Chand, New Delhi latest edition
2.	Electronic devices and Circuits theory	Boylestand, Robert and Louis Nashelsky	PHI Learning New Delhi latest edition
3.	Electrical Technology vol1	Thereja, B.L.	S.Chand New Delhi latest edition
4.	Electronics Principles	Malvino, A.P.	TMH, New Delhi latest edition
5.	Electronic devices and Circuits	Halkias, Millman	MGH, New Delhi latest edition

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Function Generator
- ii. Multi-meter
- iii. Cathode Ray Oscilloscope
- iv. Variable D.C. Power supplies (0-30V)
- v. Electronics Trainer Kits
- vi. Diode Trainer Kits
- vii. Clipping-Clamping Trainer Kits
- viii. Transistor Trainer Kits
- ix. Amplifier Trainer Kits
- x. SMPS Trainer Kits
- xi. UPS Trainer Kits
- xii. A.C. and D.C. Power supply Trainer Kits
- xiii. Three terminal Regulated Power supply Trainer Kits

C) List of Software/Learning Websites

- i. Electronic Work Bench/MultiSIM
- ii. http://www.efymag.com/
- iii. http://www.electronicsforu.com
- iv. http://www.kpsec.freeuk.com
- v. http://www.electronics- tutorials.com//symbol.html
- vi. http://www.nptel.com
- vii. http://www.ocw.mit.edu
- viii. www.gpgbiomedical.hpage.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. K. Bula, Lecturer, Dept. of Instrumentation Engineering, G.P. Gandhinagar
- Prof. N. D. Makwana, Lecturer, Dept. of Biomedical Engineering, G.P. Gandhinagar
- Prof. M. H. Dave, Lecturer, Dept. of Biomedical Engineering, G.P. Gandhinagar
- Prof. S. S. Malkan, Lecturer, Dept. of Biomedical Engineering, G.G.P. Ahmedabad

Coordinator and Faculty Members from NITTTR, Bhopal

- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor Department of Electrical and Electronics Engineering