GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

MEDICAL ELECTRONICS (Code: 3330303)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering	Third

1. RATIONALE

Medical electronics is a very important subject since the growth of biomedical industry depends upon electronics to a great extent. This course contains operational amplifier with positive and negative feedback, various operational amplifier applications used at various level of instrumentation for biomedical field. Skills acquired through course will help the student to troubleshoot medical equipments.

2. **COMPETENCY**('Programme Outcome' according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain/calibrate electronic parts of the medical equipment.

3. TEACHING AND EXAMINATION SCHEME

Teachi	ng Sch Hours	eme	Total Credits	Examination Scheme				
(III Hours)		(L+T+P)	Theory Marks Practical Marks		Marks	Total Marks		
L	Т	Р	С	ESE	PA	ESE	РА	
4	0	4	8	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Cint	('Course Outcomes' in Cognitive Domain	Topics and Sub-topics
	according to NBA terminology)	
Unit I	1a Describe the working of an	3.1. Operational amplifier: block
Unit – 1 Introduction	operational amplifier with block	diagram schematic symbol
	diagrams	schematic symbol On-Amp.
Onerational	1b Distinguish working of different types	characteristics of ideal on-amp
A mnlifiers	of open loop configurations	equivalent circuit Open loon
Ampiniers	1. Differentiate between inverting and	configuration inverting non-
	non-inverting amplifiers	inverting differential
	non myering unpriters	miterang, amerenan
	1d. Define various parameters of op-amps.	3.2. Op-amps' Parameters: input offset
	* * -	voltage, input offset, current, input
		bias current, differential input,
		resistance, input capacitance, offset
		voltage, adjustment range, input
		voltage range, common mode
		rejection ratio, supply voltage
		rejection ratio, large signal voltage
		gain, output voltage swing, output
		resistance, output short circuit
		current, supply current, power
		consumption, transient response,
		slew rate, gain bandwidth product,
		average temperature coefficient of
		input offset voltage and current,
		noise
Unit_ II	22 Distinguish between various feedback	2.1 Different feedback configuration:
On-Amp	configurations	voltage-series feedback voltage-
with	2b Explain the voltage follower Circuit.	shunt feedback, current-series
Negative	2c. Explain the working of differential	feedback and current-shunt
Feedback	amplifier with one op- amp.	feedback.
		2.2 voltage follower
		2.3 Differential amplifier with one
		opamp
Unit– III	3a. Explain the working of a general AC	3.1 AC amplifiers with a single
General	amplifier with a single supply.	supply, summing, scaling and
Linear	3b. Describe different summing, scaling	averaging amplifiers.
Applications	and averaging amplifier.	
of Op-Amp	3c. Describe the working of	3.2 Instrumentation amplifier
	instrumentation amplifier with three	differential amplifier with three
	Op-Amps with sketches.	op-amp
	3d. Differentiate the difference between	3.3 Integrator using op-amp
	the Integrator and Differentiator using	Differentiator using op-amp
	amps	
Unit – IV	4a. Describe the working of active filters.	4.1. Active filters- first order low pass
Active Filter,	4b. Explain the working principle of	Butterworth filter, first order high
Oscillators,	oscillators.	pass Butterworth filter,
Comparators	4c. Differentiate the working of a phase	4.2. Band pass filter, band reject filter,
and	shift oscillator and Wein bridge	all pass filter

Unit	Major Learning Outcomes ('Course Outcomes' in Cognitive Domain according to NBA terminology)		Topics and Sub-topics
Converters using Op- Amp	oscillator with sketches 4d. Distinguish between the working of square wave and saw tooth generator with sketches	4.3.4.4.4.5.	Oscillators- oscillator principles, phase shift oscillator, wein bridge oscillator Square wave generator Saw tooth wave generator
	4e. Explain comparator and schmitt trigger.4f. Explain the working of digital to analog converter.4g. Describe the working of successive approximation	4.6. 4.7. 4.8.	Comparators and Schmitt Trigger Converters- D/A converter with binary weighted resistors, successive approximation A/D converter
Unit – V Bio-potential Amplifiers.	5a. Explain working of electrocardiograph amplifier with sketches5b. Describe the block diagram of cardiac monitors.	5.1 5.2	Electrocardiograph amplifier Cardiac monitors

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction to Operational amplifiers	6	4	4	-	08
II	Op-Amp with negative feedback	12	2	6	4	12
III	General Linear applications of Op-	12		20		20
	Amp	12	-	20	-	20
IV	Active Filter, Oscillators, comparators	14		20		20
	and converters using Op-Amp	14	-	20	-	20
V	Bio-potential amplifiers	12	-	-	10	10
	Total	56	6	50	14	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in** *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. Unit		Practical Exercises	
No.	No.	(Course Outcomes in Esychomotor Domain according to NBA terminology)	
1	I	Test open loop inverting amplifier.	2
2	I	I Test open loop non inverting amplifier.	
3	Ι	Test open loop differential amplifier.	2
4	II	Build/test closed loop inverting amplifier.	4
5	II	Build/test closed loop non-inverting amplifier.	4
6	II	Build/test differential amplifier using one op-amp.	4
7	II	Build/test voltage follower using op-amp.	4
8	III	Build/test differential amplifier using two op-amp.	4
9	III	Build/test AC amplifier using single supply.	4
10	III	Build/test summing amplifier using inverting and non-inverting configuration.	4
11	III	Build/test averaging amplifier using inverting and non-inverting configuration.	4
12	III	Test the Integrator circuit.	2
13	III	Build/test Differentiator circuit.	4
14	IV	Build/test oscillator circuit.	4
15	IV	Build/test comparator circuit.	4
16	IV	Build/test square wave generator circuit.	4
17	IV	Build/test saw tooth generator circuit.	4
18	IV	Build/test schmitt trigger circuit using op-amp.	4
19	IV	Build/test D-A converter using op-amp.	2
20	IV	Build/test A-D converter using op-amp.	2
21	V	Record an ECG using trainer kit.	2
		Total	70

Note: Ask students to perform enough number of practical such that all the units are covered within 56 hours. (Different students may be asked to do different practical)

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Collect different datasheet of op-amp and list the different parameter values that are affecting the operation of op-amp while operating.
- ii. Observe the output parameter as well waveform using simulation and compare it with practical results.
- iii. Make a comparative table of prices of various op-amps.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Demonstrations during lectures using models, animation and video films.
- ii. Practical exercises.
- iii. Mini projects

9. SUGGESTED LEARNING RESOURCES

A) List of Books

Sr. No.	Title of Book	Author	Publication
	Biomedical	Cromwell, Leslie, Weibell, Fred	PHI Learning, New Delhi,
1	Instrumentation and	J. and Pfeiffer, Erich A.	2010 of latest
	Measurements		
2	Medical Instrumentation	Webster John G., Editor	WILEY India, New Delhi
2	Application and Design		2011 of latest
2	Linear Integrated	Ramakant A. Gayakwad	PHI Learning, 2000 of
5	Circuits Op-Amp.		latest

B) List of Major Equipment/ Instruments with Broad Specifications

- i. Digital multimeter (3 1/2 digit)
- ii. Oscilloscope (2 channel, preferably digital)
- iii. Function Generator
- iv. DC power supply(-30V-0-30V)
- v. AC power supply(-30V-0-30V)
- vi. Differential Amplifier trainer kit
- vii. Inverting and Non-inverting Amplifier trainer kit
- viii. Integrator and Differentiator Trainer Kit
- ix. Square wave generator Trainer Kit
- x. Saw tooth wave generator Trainer Kit
- xi. Schmitt trigger Trainer Kit
- xii. Instrumentation Amplifier Trainer kit

C) List of Software/Learning Websites

- i. Circuit simulator for op-amp.
- ii. www.efymag.com
- iii. www.electronicsforu.com
- iv. www.gpgbiomedical.hpage.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. K. Bula , Lecturer , Dept of Instrumentation Engineering, G. P. Gandhinagar
- Prof. N. D. Makwana, Lecturer, Dept of Biomedical Engineering, G. P. Gandhinagar
- Prof. S. S. Malkan , Lecturer , Dept of Biomedical Engineering, G. G. P. Ahmedabad
- Prof. M. H. Dave , Lecturer, Dept of Biomedical Engineering, G. P. Gandhinagar

Coordinators and Faculty Members from NITTTR Bhopal

- **Prof. (Mrs.) Susan S. Mathew**, Associate Professor, Department of Electrical and Electronics Engineering
- **Dr.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.