GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

FLUID FLOW OPERATION (Code: 3330503)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	3 rd Semester

1. RATIONALE

In almost every chemical plant fluids have to be handled and hence study of fluids at rest and in motion is important. The information about the basic concepts and principles of hydrostatics, hydrodynamics and their applications in handling various fluids like gases, vapors, liquids and slurries are provided in this course which is required for smooth and proper operation of fluid transportations machineries. Using these concepts power requirement for pumps, blowers and compressors can be determined and friction losses through pipes and fittings can also be calculated. Therefore this course is one of the important courses since it attempts to develop these skills in students.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different skills so that students are able to acquire following competency:

• Maintain flow of different fluids in the chemical plants according to the process requirement.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits Examination			nination Scl	heme				
	(In Hou	rs)	(L+T+P)	Theory Marks		Practical	Marks	Total Mark
								S
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)		opics and Sub-topics
Unit – I	1a. Define Ideal fluid and	1.1. Ideal	fluid and Real fluid
Fluid Statics	Real fluid	1.2. Funda	amentals of fluid statics and
and its	1b. Differentiate between	dynar	nics
Applications	fluid statics and dynamics		
	1c. Classify the types of pressure	Static pressu Dyna	itions of pressure concept, head, Static pressure, Gauge ure, Absolute pressure, mic pressure, Total pressure, um(negative pressure)
	1d. Compare compressible	1.4. Comp	pressible and incompressible
	and incompressible fluids	fluids	-
	1e. Derive equation of pressure in static fluid	1.5. Deriv static	ation of equation of pressure in fluid
	1f. Explain manometers	1.6. Princi	iple construction and working
	1g. Derive equation of pressure difference	of M pressu mano Piezo Micro	anometers with equation of ure difference - Simple U tube meter, Inclined manometer, meter, Two fluid manometer, o-manometer
Unit– II	2a. Explain velocity change	2.1 Veloc	city field, velocity gradient,
Fluid-Flow	across cross section		stress and rate of shear
Phenomena	2b. Explain effect of solid boundary	wake	dary layer, it's separation and formation
	2c. Define steady state and unsteady state conditions	2.3 Stead condi	y state and unsteady state tions
	2d. Describe types of viscosities	2.4 Visco Relati	osity : Absolute, Kinematic and ive
	2e. Classify fluids		ification of fluids : Newtonian Ion-Newtonian with examples
	2f. Describe Reynold's experiment	numb	old's experiment and Reynolds er, turbulent flow, laminar transition flow
Unit– III	3a. Define velocities		age velocity and mass velocity
Basic	3b. Derive continuity		nuity equation for mass
Equations	equation		ce in steady flow
of Fluid Flow	3c. Derive Bernoulli's equation and explain corrections	in Ber energ	oulli's equation and corrections rnoulli's equation like kinetic y correction, correction for friction, correction for Pump
	3d. Use Hagen-Poiseuille's Equation	3.4 Hage	n-Poiseuille's Equation
Unit– IV Friction in	4a. Describe roughness of pipe	4.1 Roug	hness of pipe

Unit Flowing	Major Learning Outcomes (Course Outcomes in Cognitive Domain 	Topics and Sub-topics 4.2 Hydraulic radius and equivalent
Fluid	and equivalent diameter	diameter
	4c. Compare skin and form friction	4.3 Skin friction and form friction
	4d. Use friction factor chart	4.4 Friction factor chart
	4e. Calculate friction losses	 4.5 Friction from changes in velocity or direction (a) Friction loss from sudden expansion of cross section (b) Friction loss from sudden contraction of cross section
T T 1 / T T		4.6 Friction loss in fittings and valves
Unit–V	5a. Compare pipe and tube	5.1 Introduction of pipe and tube
Transportation of fluid	5b. Describe fittings & joints	5.2 Types and uses of fittings and joints
or nulu	5c. Describe valves	 5.3 Construction and working of various types of valves like (a) Gate valve (b) Globe valve (c) Check valves (d) Control valve
	5d. Classify pumps	5.4 Classification of pumps
	5e. Explain pumps	5.5 Construction and working of centrifugal, reciprocating and rotary pump
	5f. Explain characteristics of centrifugal pump5g. Calculate NPSH, head	 5.6 Developed head and power requirement in centrifugal pump 5.7 NPSH, Suction lift and Cavitation in
	and power	centrifugal pump5.8Characteristic curves of Centrifugal
		5.9 Numerical based on NPSH, efficiency, head and power
	5h. Explain construction, working and uses of fluid moving machineries	5.10 Construction, working and uses of Compressor, Fan, Blower, Vacuum pump and Jet ejectors
Unit– VI Flow	6a. Describe methods of flow measurement	6.1 Methods of flow measurement
Measurement	6b. Classify flow measuring devices	6.2 Classification of flow measuring devices
	6c. Explain flow meters	 6.3 Construction, working principles and application of flow meters like Rotameter, Orifice meter, Venturi meter, Pitot tube, weirs, Coriolis meter, Magnetic meter, Ultrasonic meter
	6d. Derive equation of flow rate	6.4 Derivation of equation of flow rate through Orifice meter, Venturi meter, Pitot tube and weirs
	6e. Solve simple numerical	6.5 Numerical of Orifice meter, Venturi meter

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics	
Unit– VII Conveying and	7a Explain conveying	7.1 Pneumatic and Hydraulic conveying with industrial applications	
Fluidization	7b Explain Fluidization	7.2 Fluidization and its industrial applications	
	7c Explain Porosity	7.3 Porosity of static bed, Porosity of fluidized bed, Minimum porosity	
	7d Describe minimum fluidization velocity	7.4 Minimum fluidization velocity	
	7e Explain relation between bed pressure drop and bed height	7.5 Relation of bed pressure drop and bed height with graph	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

	Distribution of T			heory Marks		
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Fluid Statics and its Applications	06	02	03	02	07
II	Fluid–Flow Phenomena	06	02	03	02	07
III	Basic Equations of Fluid Flow	07	02	06	02	10
IV	Friction in Flowing Fluid	07	02	06	02	10
V	Transportation of Fluid	12	04	07	04	15
VI	Flow Measurement	12	03	07	04	14
VII	Conveying and Fluidization	06	02	03	02	07
	Total	56	17	35	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs Required	
1.	II	Identify types of flow by using Reynolds's apparatus	4	
2.	II	Measure absolute and kinematic viscosity using Oswald viscometer	4	
3.	III	Use Bernoulli's apparatus for mechanical energy balance	4	
4.	III	Estimate viscosity of water using Hagen-Poiseuille's equation	4	
5.	IV	Measure friction losses through pipe, fittings and valves	4	
6.	IV	Measure friction losses through packed bed	4	
7.	V	Measure pressure developed by reciprocating pump	4	
8.	V	Measure head developed by centrifugal pump	4	
9.	V	Measure friction losses through fittings and valves	4	
10.	VI	Measure flow through pipe using venturimeter	4	
11.	VI	Measure flow through pipe using orifice meter	4	
12.	VI	Measure flow through pipe using rotameter	4	
13.	VI	Measure flow through open channel using notches 4		
14.	VII	Measure minimum fluidization velocity through fluidized bed	4	
		Total	56	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based presentations, internet based assignments, and teacher guided self learning activities, MCQ/Quiz. These could be individual or group-based.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Working of different equipment and fluid transport systems should be demonstrated using chart and models or with help of video/animation films.
- ii. Expert Lecture (by persons working in Industry) may be oragnised.
- iii. Visit to nearby industries where such fluid flow operations are in use may be arranged.

9. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Books	Author	Publication
1	Unit Operations of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004 (Seventh Edition)
2	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York 2004 (Seventh Edition)
3	Unit Operations of Chemical Engineering Vol-I	Chattopadhyay, P.	Khanna Prakashan, New Delhi, 1996
4	A text book of Fluid Mechanics	Khurmi, R.S.	S. Chand Publication, New Delhi 2002
5	Unit Operation –I	Gavhane, K.A.	Nirali Prakashan, Pune 2009

(A) List of Books:

B. List of Major Equipment/Materials with Major Specification

- i. Venturimeter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, mercury manometer)
- ii. Orifice meter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, mercury manometer)
- iii. Rota meter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, minimum 1 in. transparent tube)
- iv. V Notch, Rectangular Notch assembly for flow measurement in open channel (Minimum notch size 5 cm)
- v. Reynold's Experiment setup for studying types of flow (Minimum pipe dia. -0.5 in transparent pipe)
- vi. Bernoullies experiment setup for mechanical energy balance in flowing fluid with transparent channel of at least 1 in ID.
- vii. Reciprocating Pump Assembly with pump & motor of minimum 0.25 HP
- viii. Centrifugal Pump Assembly with pump & motor of minimum 0.25 HP
- ix. Fluidized bed setup made of glass pipe with minimum 2 in ID
- x. Friction through Pipes, Fittings and Valves setup (0.5 in ID pipe with elbow, Tee, Square, Reducer, Enlarger, Glob valve, Gate valve)
- xi. Packed bed setup to measure friction losses with minimum 2 in ID transparent pipe
- xii. Oswald viscometer and stopwatch

C List of Software/Learning Websites

- i. http://www.nzifst.org.nz/unitoperations/flfltheory.htm
- ii. http://books.google.co.in/books?id=K4almhE5BoAC&pg=PP1&lpg=PP4&ots= 1XDNGSxMsY&dq=Unit+Operation-1+nirali+Prakashan+published+year
- iii. http://www.chemicalprocessing.com/whitepapers/fluid-handling/

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. J. R. Vadher**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- **Prof. M. R. Acharya**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- Prof. P. M. Gadhiya, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot
- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Prof Bashir Shaikh, Assistant Professor, Department of Applied Sciences.
- Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat