GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

INDUSTRIAL STOICHIOMETRY

(Code: 3330504)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	3 rd Semester		

1. RATIONALE

Industrial Stoichiometry provides the fundamental information to determine the material and energy balances for all types of unit operations and unit processes across the equipment and overall chemical plant. Material and energy balance calculations are of prime importance for design and also for conservation of mass and energy to reduce the losses and cost that enhances overall economy of plant. The unit conversions, material and energy balance are the essential part in the practice of other courses such as mechanical operations, fluid flow, heat Transfer, mass transfer etc. Thus this course is a core course for chemical engineers and should be learned sincerely by students.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course should be taught and implemented with the aim to develop different types of skill so that students are able to acquire following competency:

• Determine material and energy balance for different unit operations and processes.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Schem						
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Marks	Total
								Marks	
L	Т	Р	С	ESE	PA	ESE	PA	100	
3	2	0	5	70	30	00	00	100	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Learnir	ng Topics and Sub-topics
	Outcomes (Cour	se
	Outcomes in Cognitiv	ve
	Domain according to NB	A
	terminology)	
Unit – I	1a. Explain importance of	1.1 Introduction to process calculation
Unit Systems	process calculation	*
-	1b. Define different unit	1.2 Dimensions and systems of units
	systems	1.3 Fundamental quantities of units,
		Derived quantities
	1c. Explain the	1.4 Definition and units of force,
	importance of	volume, pressure, work, energy,
	physical quantities of	power, heat
	Units.	
	1d. Convert units among	1.5 Unit conversions in FPS, MKS and
	different systems	SI systems
Unit_II	2a Calculate	2.1 Definition and calculations of
Basic Chemical	important physical	mole. atomic weight, molecular
Calculations	quantities	weight, equivalent weight, specific
		gravity and API gravity
	2b. Calculate	2.2 Composition of solid, liquid by
	composition of	weight % and mole %
	mixtures and	2.3 Morality, normality, morality,
	solutions	gm/lit and related simple numericals
Unit–III	3a. Derive ideal gas law.	3.1 Concept of ideal gas
Ideal Gas Law	3b. State reference	3.2 Derivation of ideal gas law
	conditions	3.3 Definition of STr alia NTr 2 A Dalton's law and Amagat's law
	3h Calculate	3.5 Derive relation between mole%
	important quantities	volume% and pressure% of ideal
	for ideal gas mixture	gases
	B	3.6 Calculation of average molecular
		weight, density, mole%, weight% in
		gas mixture in SI/MKS systems
Unit– IV	4a. Explain law of	4.1 Law of conversation of mass
Material	conservation of mass	
Balance In	4b. Calculate mass	4.2 Brief description and simple
Processes Without	balance of important	material balance calculation of
Chamical	steady state condition	mixing crystallization evanoration
Reactions	steary state condition	4 3 Single stage material balance
Reactions		calculation of leaching and
		extraction
	4c. Describe recycling	4.4 Brief idea regarding recycling
	and by passing	and by passing operation
	operations	
Unit– V	5a. Explain basic	5.1 Definition: Limiting reactant,
Material Poloneo In	balance with chemical	Excess feactant, conversion, yield
Processes	reaction	

Unit	Major Learning	Topics and Sub-topics		
Cint	Outcomes (Course	Topics and Sub-topics		
	Outcomes in Cognitive			
	Domain according to NBA			
	terminology)			
Translatin a	terminology)	5.2 Simple numerical for finding		
Involving	belence with chemical	3.2 Simple numerical for finding		
Departions		yield, conversion and		
Reactions	reaction	5.3 Simple calculation of material		
		Balance based on reaction		
Unit_VI	6a Calculate	6.1 Heat capacity and specific heat		
Energy Balance	heat capacity specific	6.2 Mean heat capacity of gases		
Energy Dalance	heat heat capacity of	6.3 Heat capacity of gas mixture and		
	gas mixture and	liquid mixture		
	liquid mixture	6.4 Calculations of heat capacity by		
		integral equation up to three		
		terms		
	6b. Explain concepts of	6.5 Brief explanation of sensible		
	sensible heat and	Heat and latent heat of fusion,		
	latent heat	sublimation, vaporization		
	6c. Calculate standard heat	6.6 Calculations of standard heat of		
	of formation and heat of	formation from heat of		
	reaction	combustion data		
		6.7 Calculations for heat of reaction		
		from heat of formation and heat		
		of combustion data		
Unit– VII	7a. Describe combustion	7.1 Introduction of combustion		
Combustion				
	7b. Describe calorific	7.2 Types of fuels		
	values	7.3 Calorific values of fuels		
		7.4 Proximate and ultimate analysis		
		of solid fuel		
	7c. Calculate calorific	7.5 Numericals related to calorific		
	value and air	values of fuel from composition		
	requirement for	7.6 Numericals related to air		
	combustion	Requirement and composition of flue		
		gases.		

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Unit Systems	3	2	2	2	06
II	Basic Chemical	5	2	2	4	08
	Calculations					
III	Ideal Gas Law	5	2	2	4	08
IV	Material Balance in	8	0	6	7	13
	Process without					
	Chemical Reactions					
V	Material Balance in	7	2	3	7	12
	Process Involving					
	Chemical Reactions					
VI	Energy Balance	8	2	4	8	14
VII	Combustion	6	2	2	5	09
To	otal	42	12 12 21 37 70		70	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

Not Applicable

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities: Tutorials, group assignments based on mass and energy balance of equipments like heat exchanger, boilers, distillation column, evaporator, dryer, reactors, absorption column, Use of MS-Excel in solving numerical.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. More numerical examples should be discussed in the class to make concepts clear. Home Assignment should given to students on similar type of numerical for more practice.
- ii. Video lecture from NPTEL websites may be shown to class for better understanding of the concepts.
- iii. Video/animation films may be shown for explaining abstract concepts.
- iv. Quizzes may be organised in the class by dividing it into groups to create an environment of competition.
- v. Tutorial sessions may be organised as given in following table

Sr. No.	Unit No.	Topics/Sub Topics on which Numerical may be given during Tutorial Sessions	Approx. Hrs. Required
1	Ι	Systems of Units and Conversions	02
2	II	Numericals based on composition of mixtures and solutions	03
3	III	Numericals based on Ideal gas law and calculation of composition of gas mixture	03
4	IV	Numericals based on mass balance for important unit operations	06
5	V	Numericals based on mass balance involving chemical reactions	04
6	VI	(a) Numericals based on heat capacity and heat change(b) Numericals based on heat of formation and heat of reaction	06
7	VII	Numericals on calorific values of fuel, theoretical air requirement and composition of flue gases	04
		Total	28

9. SUGGESTED LEARNING RESOURCES

A. List of Books:

S. No.	Title of Books	Author	Publication
1	Stoichiometry	Bhatt B. I. and Vora S. M.	Tata-McGraw Hill, New Delhi, Year-2007
2	Process Calculation	Gavhane K. A.	Nirali Prakashan, Pune, Year-2012
3	Basic Principles and Calculations in Chemical Engineering	Himmelablau David M.	PHI Learning, New Dehli, Year-2003

B. List of Major Equipment/Materials

Nil.

C. List of Software/Learning Websites

i.Basic Principles & Calculations in Chemical Engg (CD Rom) ii.www.ocw.mit.edu

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Harsh B. Shukla**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Rakesh R. Vasava**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Mukesh B. Dhangar**, Lecturer in Chemical Engineering, Shri N. G. Patel Polytechnic, Isroli-Afwa

Coordinator and Faculty Members from NITTTR Bhopal

- Prof Bashir Shaikh, Assistant Professor, Department of Applied Sciences.
- Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat