GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

DIGITAL LOGIC DESIGN (Code: 3331104)

Diploma Programme in which this course is offered	Semester in which offered		
Electronics and Communication Engineering	3 rd Semester		

1. RATIONALE

Digital technology is the fastest growing technology and have revolutionised the electronics Industry. In most of the applications digital technology has replaced analogue technology. Digital logic is heart of digital electronic circuits. A basic understanding of this subject is therefore essential to effectively maintain digital electronic devices. The study of this course will enable the students to test the working and rectify the faults of common digital circuits.

2. **COMPETENCY** (Programme outcome according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain the digital electronic circuits.

3. TEACHING AND EXAMINATION SCHEME

	Examination Scheme				Total Credits	Teaching Scheme		
Total Marks	ory Marks Practical Marks		Theory Marks		(L+T+P)	(In Hours)		
	РА	ESE	PA	ESE	С	Р	Т	L
150	20	30	30	70	06	02	01	03

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning	Topics and Sub-topics		
	Outcomes			
Unit	('Course Outcomes' in			
	according to NBA			
	terminology)			
Unit – I	1a.Differentiate binary	1.1	Introduction to Digital System	
Number	and decimal	1.2	Binary and digital number system.	
systems	number system	1.3	Binary arithmetic operations: addition,	
and codes	operations on		subtraction, multiplication and division	
	Binary numbers	1.4	Complements: n's, (n-1)'s compliments	
	1. Convert of number	1.5	Subtraction using complement method.	
	Ic. Convert of number	1.0	Octal number system	
	hexadecimal and	1./ 1 Q	Hexadecimal number system.	
	vice versa	1.0	Conversion from onder systems and vice versa	
			lickaucennai number systems and vice versu.	
	1d. Interpret the Binary codes.	1.9	Codes: BCD, Gray, Excess-3, ASCII, EBCDIC.	
Unit – II	2a. Simplify the	2.1.	Basic theorems and properties of Boolean	
Boolean	Boolean functions.		algebra.	
algebra and		2.2.	Boolean functions: Sum of Product (SOP) and	
logic gates			Product of Sum (POS) expressions.	
	2b.Describe functions	2.3.	Basic Digital Logic Gates: Symbol,	
	of Logic gates.		operation and truth-table of AND, UK, NU1,	
		24	NAND, NOK, EA-OK, EA-NOK gates.	
	2c. Implement the	2. 4 . 2.5	Algebraic simplification of Boolean expression	
	Boolean functions	2.5.	NAND-NOR circuit implementations	
	using logic gates for	2.7.	AND-OR - Invert implementations	
	2d.Simplify Boolean	2.8.	Karnaugh map(K-map) simplification	
	man		Techniques for SOP and POS functions up to	
	mup.	20	Four variable	
		2.9.	Boolan function	
Unit – III	3a. Explain function of	3.1.	Combinational Circuits: Half adder, full adder,	
Combinatio	combinational		parallel binary adder, half Subtractor, full	
nal logic	circuits		subtractor, parallel binary subtractor,1's	
circuits			complement subtractor, 2's complement	
			subtractor/adder BCD adder.	
	3b. Implement various	3.2.	Binary to Gray and Gray to binary code	
	circuits	2.2	converters	
	chedits.	3.3.	Decoder and Encoder Multiplevers and Demultiplevers	
		3.4.	Multiplexers and Demultiplexers Magnitude Comparator	
		3.5.	Bit error correction: Parity Generators and	
		5.0.	Checkers	
		3.7.	BCD to Seven segment decoder	

	Major Loorning	Topics and Sub topics		
	Outcomos		Topics and Sub-topics	
	("Course Outcomes" in			
Unit	(Course Outcomes' in			
	Cognitive Domain			
	according to NBA			
Unit IV	(a Describe the	11	Types of flip flops: Latah and Elip flop S. D.	
Sequential	function of various	4.1.	flip flags asymptote and amphropous S.D.	
logio oirquite	types of flip flops		inp-nops, asynchronous and synchronous 5 K	
logic circuits	with the help of		flip flops, D flip flop, J-K flip flop, JK master	
	circuit diagram		slave flip flop, T Flip Flop, Edge triggered Flip-	
	truth table and		Flops.	
	timing diagram			
	4h Describe the	12	Pagisters: Classification of Shift Pagister Serial	
	working of various	4.2.	in corial out corial in parallel out parallel in	
	Registers with the		in seriai-out, seriai-in paranei-out, paranei-in	
	help of circuit		serial-out and parallel-in parallel out.	
	diagram truth table			
	and timing diagram.			
	4c. Explain the working	4.2.	Asynchronous(ripple) 4-bit binary counter	
	of various types of	4.3.	BCD Counter.	
	Counters with the	44	Synchronous counters	
	help of circuit	45	UP/DOWN counter	
	diagram, truth table	т .5. Л б	Ring counters	
	and timing diagram.	4.0.	King counters.	
Unit – V	5a. Explain working	5.1.	D/A Conversion: Weighted resister, R-2R	
D/A,A/D	of D/A converters		ladder network, Accuracy and Resolution.	
and	5b. Explain working of	5.2.	A/D Conversion: Dual slope type, Counter type,	
Memories	A/D converters.		Successive approximation, Flash type.	
	5c. Classify	5.3.	Semiconductor Memory: RAM-SRAM and	
	semiconductor		DRAM, ROM-PROM, EPROM, EEPROM,	
	Memories		Flash memory.	
Unit – VI	6a. Explain working of	6.1.	Logic families and level of Integration SSI,	
Digital	Bipolar and		MSI,L SI, VLSI	
Integrated	unipolar logic	6.2.	Characteristics of digital ICs-fan-in, fan-out,	
Circuits	families with their		propagation delay, power dissipation, noise	
	characteristics.		margins, figure of merit.	
		6.3	Transistor-Transistor logic (TTL) circuits: Open	
		0.5.	collector output Totem pole output Tri-state	
			output	
		61	Emitter Coupled Logic (ECL)	
		0. 4 . 6 5	Integrated Injection Logic (III.)	
		0.3.	MOS and CMOS Logic	
	6h Comport Logia	0.0.	IVIOS allu CIVIOS Logic.	
	families	0.7.	Comparison of unterent logic families	
	6c Define	68	Programmable devices :	
	programmable	0.0.	PI A PI D PAI FPGA ASIC	
	Devices.			

Unit	Unit Title	Teaching	Distribution of Theory Marks			rks
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Number systems and	06	02	04	03	09
	codes					
II	Boolean algebra and logic	08	00	08	06	14
	gates					
III	Combinational logic	08	04	06	04	14
	circuits					
IV	Sequential logic circuits	08	04	06	04	14
V	D/A,A/D and Memories	06	04	04	02	10
VI	Digital Integrated Circuits	06	04	05	00	09
Tota	al	42 18 33 19			70	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in *affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S.	Unit	Practical/Exercise	
No.	No.	('Course Outcomes' in Psychomotor Domain according to	
		NBA terminology)	Require
			d
01.	II	Build/Test the functionality of Basic and Advance Logic Gates.	
02.	II	Build/Test 2 input basic logic gates using NAND gate.	2
03.	II	Build/Test 2 input basic logic gates using NOR gate.	2
04.	III	Build a circuit to Convert 4 bit Binary to Gray Code using logic	
		gates	
05.	III	Build a circuit to Convert 4 bit Gray to Binary Code using logic	2
		gates	
06.	III	Build/Test Half Adder Circuit.	2
07.	III	Build/Test Full Adder Circuit.	
08.	III	Build/Test Half Subtractor Circuit.	
09.	III	Build/Test 4 bit Parallel Adder circuit.	
10.	III	Build/Test the 3X8 Decoder circuit.	
11.	III	Build/Test the 8X1Multiplexer circuit.	

GTU/NITTTR/Bhopal/1-14

S. No.	Unit No.	Practical/Exercise ('Course Outcomes' in Psychomotor Domain according to NBA terminology)		
12.	III	Build/Test BCD to Seven segment LED Display circuit.	2	
13.	IV	Build/Test the functionality of the SR Flip-Flop.	2	
14.	IV	Build/Test the functionality of the JK Flip-Flop.		
15.	IV	Build/Test the working of the Shift Register.		
16.	IV	Build/Test the working of the 4 bit Ripple Counter.	2	
17.	IV	Build/Test the working of 4 bit UP - DOWN Counter.	2	
18.	V	Build/Test Analog/Digital converter (ADC 0809 or equivalent)	2	
19.	V	Build/Test digital to analog converter (DAC 0808 or equivalent).	2	
20.	VI	Design and Develop mini project using digital logic.	2	
		Total	40	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- Read and note down specifications of Digital ICs using data sheet: IC number/ Pin Diagram/voltage levels, applications for the following Digital ICs (TTL/CMOS): AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR gates, Decoder, Multiplexer, BCD to 7-segment decoder, SR FF,JK FF, D FF, shift Register, Counter, ADC, DAC.
- ii. Solve real life problems using binary logic theory and implement it using digital logic circuits.
- iii. Explore working of Digital clock/Digital panel.
- iv. Prepare mini project using Various Digital IC and display devices.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Take small instrumentation components to the class when teaching
- ii. Use tutorial classes for designing simple digital logical circuits and other teacher guided student activities.
- iii. Internet based home assignments
- iv. Mini projects (in group of three to four students)

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication	
1.	Digital Logic and Computer	M. Morris Mano	Pearson Education, New	
	Design		Delhi, 2011 or latest	
2.	Digital Principles and	Malvino and Leech	TMH Pub., New Delhi, 6 th	
	Application		Edition or latest	
3.	Fundamentals of Digital	A. Anand Kumar	PHI Learning, New Delhi,	
	Circuits		2nd Edition or latest	
4.	Morden Digital Electronics	Jain, R P	TMH Education, New	
			Delhi, 3 rd Edition or latest	
5.	Digital Electronics	Kharate G.K.	OXFORD University Press,	
			2010	

B) List of Major Equipment/Materials with Broad Specifications

- i. Digital Logic trainer board.
- ii. A/D and D/A trainer modules.
- iii. Universal counter module
- iv. Digital IC tester
- v. Regulated power supply

C List of Software/Learning Websites

- i. <u>www.nptel.iitm.ac.in</u>
- ii. <u>www.ocw.mit.edu</u>
- iii. <u>www.slideshare.net/</u>

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. K. R .Vadalia**, Lecturer Electronics and Comm. Engineering, G.P. Rajkot.
- **Prof. T. P. Chanpura**, Lecturer Electronics and Comm. Engineering, G.P. Ahmedabad.
- **Prof. M. S. Dave**, Lecturer Electronics and Comm. Engineering, G.P. Ahmedabad.
- **Prof. U.V. Buch**, Lecturer Electronics and Comm. Engineering, G.P. Gandhinagar
- Prof. K. A. Dave, Lecturer Electronics and Comm. Engineering, VPMP, Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Anjali Potnis**, Associate Professor, Department of Electrical and Electronics Engineering,
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering,