GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

FUEL, FURNACES AND REFRACTORIES (Code: 3332104)

Diploma Programmes in which this course is offered	Semester in which offered
Metallurgy Engineering	3 rd Semester

1. RATIONALE

Fuels are basic requirements of Metallurgical furnaces for extraction of metals. Fuels play a major role in quality and cost of any metallurgical product. Important metallurgical operations like melting, heat treatment etc. are carried out in various metallurgical furnaces. For optimum utilization of fuel and quality control in the process, furnace is most important equipment. Refractories are very important material for construction of furnaces which help in the efficient utilization of furnace. Thus it is very important for students to learn about fuels, furnace and refractories.

2. **COMPETENCY (Programme Outcome according to NBA Terminology)**

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select the proper type of furnace with relevant refractory material and appropriate fuel for given metallurgical operation.

Teaching Scheme		Total Credits	Examination Scheme					
(In Ho	ours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	0	4	70	30	0	0	100

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Course Outcomes in Cognitive	L
	Domain according to NBA	
	terminology)	
Unit – I Introduction	1a. Define fuel1b. List fuels according to the	1.1. Types of fuel with example (like solid, liquid, gas)
to Fuel	source	1.2. Sources of different types of fuels.
	1c. Distinguish the features of	1.3. Merits and demerits of each fuel.
	solid, liquid and gaseous fuel	1.4. Comparison of solid, liquid and gaseous
	1d. Select the relevant fuel for the	fuel
	given furnace.	
Unit– II	2a. Differentiate coal used in	2.1 Formation of coal, Types of coal.
Solid,	various applications.	2.1 Pointation of coal
Liquid	2b. Explain the importance of	2.3 Proximate and ultimate analysis of coal
Gaseous fuel	calorific value	
	2c. Select the coal for furnace	
	under consideration	
	2a. Describe testing methods of	2.4 Methods for testing properties like
	coal. 2b. Describe the distillation of	calorific value, Flash point, Fire point.2.5 Production, composition and uses of
	crude oil	water gas and producer gas.
	2c. Select the relevant liquid and	2.6 Composition and uses of blast furnace gas
	gaseous fuel for the given	and coke oven gas.
	application	2.7 Fractional distillation of crude oil
Unit– III	20 Explain furnade construction	3.1 Define furnaces.
Metallurgic	3a. Explain furnace construction and working	3.1 Define furnaces.3.2 Classify furnaces on the basis of uses,
al furnaces	3b. Explain various furnace	process, fuel.
	atmosphere	3.3 Production furnaces like Blast furnaces,
	3c. Explain the working of	reverberatory, open hearth, LD, Kaldo.
	production furnaces	
	3d. Explain the working of	3.4 Melting furnaces like Cupola, Rotary
	melting furnaces 3e. Explain the working of heat	furnaces, Crucible furnaces, Electric furnaces.
	treatment furnaces	3.5 Heat treatment furnaces like muffel and
	3f. Compare the environmental	salt bath furnace
	impact of all these types of	3.6 Atmospheric control in various furnaces.
	furnaces	
Unit– IV	4a. Describe manufacturing of	4.1 Properties of refractory material.
Introduction	different types of refractories	4.1 Manufacturing of acid, basic and neutral
to	4b. List the various types of tests	refractories
Refractories	4c. State the different types of	4.3 Test refractories like visual inspection,
	testing procedure of	Pyrometric cone equivalent (PCE) test,
	refractory materials.	RUL test, Spaling test, thermal
	4d. Select the relevant refractory	conductivity test etc.
	material for the given furnace	
	Turnuce	
Unit – V	5a. State the advances in melting	5.1 Advances in melting furnaces
Advances in	furnaces	5.2 Advance in heat treatment furnaces
Furnaces	5b. State the advances in heat	5.3 Advances in refractories

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
and Refractories	treatment furnaces 5c. State the advances in Refractories 5d. State substitute of furnaces and refractory materials which can be replaced by the modern ones for the given application	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Aarks
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
1.	Introduction of fuel	06	04	02	00	06
2.	Solid, Liquid and Gaseous fuel	14	04	10	06	20
3.	Metallurgical furnaces	18	06	12	06	24
4.	Introduction to refractories	14	04	08	04	16
5.	Advances in furnaces and refractories	04	00	02	02	04
	Total	56	20	32	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

Not Applicable

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Industrial visits.
- ii. Collection and Study of various types of fuel and refractories.
- iii. Group discussion on recent fuel scenario.
- iv. Preparation of assignment.
- v. Presentation on recent developments in the furnace technology.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Improved lecture method
- ii. Industrial visit
- iii. Video film presentation

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Fuels, Furnace and	O. P. Gupta	Khanna publication, New Delhi, 6 th
	Refractories		edition,
2	Industrial furnaces	W. Trinks	Wiley, New York, 5 th edition, 1967
3	Refractories	F.H.Norton	McGraw-Hill, New York, 4 th edition,
			1968
4	Introduction to	A.K.Winter Ekay	McGraw-Hill, New York, 1958 or
	Foundry Tech	Winter.	latest edition

B) List of Major Equipment/Materials with Broad Specifications

Not applicable

C) List of Software/Websites

i. <u>www.iitk.ac.in/nptel</u>

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Dr. I. B. Dave,** Head, Department of Metallurgy Engineering, Dr. S and S S Ghandhy Engg. College, Surat.
- **Prof. V. N. Kaila**, Lecturer Department of Metallurgy Engineering, Government Polytechnic Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Vandana Somkuwar**, Associate Professor, Department of Mechanical Engineering
- Dr. C. K. Chugh, Professor, Department of Mechanical Engineering