GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

BASIC MOULD DESIGN (Code: 3332301)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	3 rd semester

1. RATIONALE

Mould design is the heart of plastic engineering. The quality of any plastic component lies in the accurate design of plastic mould. Every plastic diploma engineer has to invariably handle different types of moulds and the materials required for their manufacture in small scale or large scale plastic industries. S/he will have to identify, analyse and choose the most relevant mould for different applications. Moreover s/he will also have use different types of hand or machine operated plastic moulding equipment. Hence, this course has been designed to develop such competency and skills.

2. **COMPETENCY** (Programme Outcome according to NBA Terminology)

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Select different types of plastic moulds for various applications.

3. TEACHING AND EXAMINATION SCHEME

Teac (1	Teaching Scheme (In Hours)		Total Credits	Examination Scheme			E	
		(L+T+P)	Theory Marks Practical Marks		Theory Marks		Total Marks	
L	Т	Р	С	ESE	РА	ESE	PA	
3	0	4	7	70	30	40	60	200

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

4. COURSE DETAILS

	Major Learning Outcomes	
Unit	(Course Outcomes in	Topics and Sub-topics
	Cognitive Domain according	1 1
	to NBA terminology)	
Unit – I	1a. Describe functions various	1.1 Basic concept of: Part drawing,
Hand	mould components.	Parting line. Core and cavity
Injection	1b. Sketch different mould	Runner and gate. Election
Mould and	parts as well as mould	Back plate. Dowel. Socket headed
Machine	assembly	screw, Sprue, sprue bush, Runner
Injection		and gate Locating ring plate Knock
Mould		out rod. Guide pin and guide bush
110000		Venting Cooling channel Ejector
		assembly
	1c. Distinguish the features	1.2 Assembly sketch of hand mould
	between hand mould and	1.3 Assembly sketch of machine mould
	machine mould	
Unit– II	2a. Discriminate between flat	2.1 Concepts: Flat parting surface and
Parting	parting surface and non-flat	Non-flat parting surface
Surfaces	parting surface.	
	2b Distinguish between	2.2 Stepped Profiled and Angled
	Stepped Profiled and	2.2 Stepped, Homed and Angled
	Angled parting surfaces	2.3 Complex edge forms
	2c For a given situation select	2.5 Complex edge forms
	the relevant parting surface	
	the relevant parting surface	
Unit– III	3a. Distinguish between	3a. Core and cavity: Integer cavity and
General	integer and core plates	core plates, Inserts and local inserts
Mould	3b. Discriminate between	1 /
Construction	inserts and local inserts	
	3c. For the given situation,	
	choose the relevant insert	
	3b. Differentiate between	3c. Types of bolster plates: Solid type,
	solid, strip and chase type	Strip type, Frame type, Chase type
	bolster plates.	3d. Guide bush and guide pillar: Leader
	3c. State the features of the	pins, Standard, Spigotted, Surface
	guide bush	fitting, Pull-back
Unit – IV	4a. Explain feeding system	4.1 Sprue
Feed System	4b. Differentiate between	4.2 Runner : Runner section and size,
	Sprue and runner	Runner layout, Balancing of runner
		system
	4c. State the function and	4.3 Types of gate and location of gate
	location of gate	
Unit – V	5a. State the need for the	5.1 Ejector grid
Liection	ejector grid	5.2 Ejector plate assembly

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
System	5b. Distinguish between ejector and retaining plate	Ejector plate, Retaining plate, Ejector rod and bush, Assembly return systems 5.3 Ejector elements and ejection systems
	5c. State the need for sprue puller	5.4 Sprue puller
Unit – VI Cooling system	 6a. Justify the need for a cooling system. 6b. Select the most appropriate cooling integer for a given situation with relevant justification 	 6.1 Need for cooling 6.2 Cooling integer: Cavity plate cooling - U-circuit, Rectangular circuit, Z-circuit; Core plate cooling - Angle hole system, Baffled hole system, Stepped circuit
	 6c. Distinguish between cooling cavity rectangular and circular insert 6d. Differentiate between helical core, Heat pipe and Heat rod and Baffle cooling 	 6.3 Cooling cavity inserts: Rectangular and Circular insert 6.4 Cooling core insert: Helical core cooling, Deep chamber design, Heat pipe cooling, Heat rod cooling 6.5 Baffle cooling

5. SUGGESTED SPECIFICATION TABLE FOR THEORY

		Teaching	Distribution of Theory Marks			
Unit	Unit Title	Hours	R	U	Α	Total
No.			Level	Level	Level	Marks
1.	Hand Injection and Machine	07	07	03	03	13
	Injection Mould					
2.	Parting Surface	03	02	03	00	05
3.	General Mould Construction	08	07	03	03	13
4.	Feed System	08	06	04	03	13
5.	Ejection System	08	07	03	03	13
6.	Cooling System	08	06	03	04	13
	Total	42	35	19	16	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective**

domain) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx Hours Required
1		Draw plan and sectional elevation of different injection moulded parts with actual dimensions	08
2	т	Draw plan and sectional elevation of various components of different injection mould	08
3	1	Draw assembly drawing of hand injection mould for given plastic products	08
4		Draw detail drawing of hand injection mould for given plastic products	08
5	II	Sketch various types of parting surfaces	08
6	V	Sketch ejector plate assembly, ejector elements, ejector systems and various types of sprue puller	08
7	VI	Draw different cooling designs	08
Total			56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect injection moulded articles and measure its weight and volume.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby mould making industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Visit to nearby plastic industries
- ii. Video/Animation films on working of different type of molding machines may be shown.
- iii. Mini project on study of different type of molding machines and design of moulds may be given to students.

9. SUGGESTED LEARNING ACTIVITIES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Injection mould design	R.G.W. Pye.	Longman,1989
2.	Fundamentals of injection mould design	A.B.Glenvil L and Denton	Industrial Press, 1965(The University of California)
3.	Plastics mould Engineering handbook	Prible and Drebois	Springer (1987)
4.	How to make injection mould	Henser publication	Henser publication

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Hand injection mould (write broad specifications)
- ii. Machine injection mould (write broad specifications)
- iii. Injection mould components (write broad specifications)
- iv. Digital weighing scale (write broad specifications)
- v. Measuring instruments (write broad specifications)

C) List of Software/Learning Websites

- i. http://www.ferris.edu/htmls/academics/course.offerings/hillm/MYWEB7/index.htm
- ii. http://mould-technology.blogspot.in/search/label/Mold%20Construction
- iii. http://webhotel2.tut.fi/projects/caeds/tekstit/mould/mould_structure.pdf
- iv. http://mould-technology.blogspot.in/2008/02/basic-functions-of-mold-baseparts.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences