GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

MOULD FABRICATION TECHNOLOGY-I

(Code: 3332303)

Diploma Programmes in which this course is offered	Semester in which offered
Plastic Engineering	3 rd Semester

1. RATIONALE

A plastic diploma engineer has to use various metal alloys and basic machine tools for selected mould materials. This competency requires the knowledge of ferrous metals and alloys and non ferrous metals and alloys- their structures and properties for selection of materials for fabricating machine components and mould used in plastics industries. This may help to understand different heat treatments and other advanced mould fabrication techniques. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes. This is an important course for plastic engineers.

2. LIST OF COMPETENCIES (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate various basic machine tools for selected mould materials.

3. Teaching and Examination Scheme

	ching Scl		Total Credits	Examination Scheme				
(,	In Hours	S)	(L+T+P)	Theory Marks		heory Marks Practical Marks		Total Marks
L	Т	P	C	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

4.DETAILED COURSE CONTENT

Unit	Major Learning	Topics and Sub-topics		
	Outcomes (Course	r and and are		
	Outcomes in Cognitive			
	Domain according to			
	NBA terminology)			
Unit – I	1a. Describe various	1.1 Introduction		
Introduction	engineering	1.2Classification of engineering materials		
to	materials	1.3Properties of engineering materials		
Engineering		1.4Applications of engineering materials		
Materials				
Unit– II	2a.Describe different	2.1Basics of steel, Types of steels.		
Ferrous	types of steel			
Metals and				
Alloys	2b. Explain effect of	2.2Composition and uses of cast iron.		
	various alloying	Effect of silicon, sulphur and phosphorus on		
	elements on	properties of steels. Effects of alloying		
	properties of steel	elements on steels such as chromium, nickel,		
		manganese, tungsten, vanadium,		
		molybdenum.		
TT '4 TTT	2 D 3 4	Composition of tool steels/alloy steels.		
Unit– III		3.1 Introduction, Properties of non-ferrous metals,		
Non Ferrous	ferrous metal alloys	Aluminium & its alloys, Copper & its alloys		
Metals and	2h Calagt annuanciata	3.2Application of non-ferrous metals & Alloys		
Alloys	3b.Select appropriate non ferrous metals			
Unit – IV	and alloys 4a. State the need of heat	4.1Principle of heat treatment.		
Heat	treatment	4.11 Thicipie of heat treatment.		
Treatment	4b.Distinguish different	4.2Annealing & process annealing, Normalising		
of Steel	heat treatment	Hardening, Tempering, Case hardening		
or steer	processes	(Pack carburising & gas carburising),		
	F	Nitriding		
		Cyniding (Cabonitriding), Flame hardening		
Unit – V	5a.Classify basic	5.1Classification of basic machine tools.		
Basic	machine tools			
Machine	5b.Describe working	5.2Working principle, types, constructional		
Tools	principle and	features, operations, advantages and		
	various machine	disadvantages,		
	tools			
	5c.Select proper	5.3applications of: Lathe machine, Drilling		
	machine tool for	machine, Shaping machine, Milling machine,		
	mould fabrication	Boring machine		

5.SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total Marks
1.	Introduction to Engineering Materials	05	05	02	00	07
2.	Ferrous Metals and Alloys	08	05	05	04	14
3.	Non Ferrous Metals and Alloys	03	04	03	00	07
4.	Heat Treatment of Steel	08	04	08	02	14
5.	Basic Machine Tools	18	04	20	04	28
	Total	42	22	38	10	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Notes: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical Exercise/Experiment (Course Outcomes in Psychomotor Domain according to NBA terminology)	Approx Hours Reqd.
1	I	Collect one sample of each engineering material and list their properties	04
2		Perform hardening of mould steel using oil as quenching media. Measure change in hardness.	04
3		Perform Tempering process for the above hardened component and measure change in properties/hardness.	04
4	IV		
5		Perform Normalising treatment for the given job and measure the change in hardness.	04
6		Perform Case hardening treatment for the given component.	
7	V	Prepare guide pin on lathe machine	04
8	V	Prepare core insert for given product	
Total			32

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- 1. Students will collect information related to the experiment through internet.
- 2. Students will visit nearby mould making industry.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Visit to nearby industries/workshops/metal treatment plants
- ii. Video/animation films on working of different type of machine tools.
- iii. Video/animation film on different treatments of metals.

9. SUGGESTED LEARNING ACTIVITIES

A. List of Books

Sr. No.	Title of Book	Author	Publication
1.	Elements of Workshop Technology	Hajra & Choudhary	
2.	Elements to Metallurgy	Swaroop	
3.	Material Science & Processes	Hajra & Choudhary	
4.	Material Science & Metallurgy	O.P.Khanna	
5.	Basic Engineering Metallurgy	Keyser	
6.	Code of designation of steel	IS 1962-61	
7.	A textbook on Metallurgy	Biley	
8.	Workshop Technology Vol 1 & 2	Hajra Choudhary	
9.	Production Technology	Jain and Gupta	
10.	Production Technology	Rusinoff	
11.	Manufacturing Processes	Began	
12.	Production Technology	Lindsburg	

B. List of Major Equipment/ Instrument

- i. Lathe machine
- ii. Drilling machine
- iii. Shaping machine
- iv. Milling machine
- v. Boring machine
- vi. Grinding machine
- vii. Metallurgical microscope
- viii. Hardness tester
- ix. Induction furnace

C. List of Software/Learning Websites

- i.http://www.lathemachinesindia.com/lathe-machine.html
- ii. http://www.hnsa.org/doc/pdf/lathe.pdf
- iii. http://www.hnsa.org/doc/pdf/milling-machine.pdf
- iv. http://uhv.cheme.cmu.edu/procedures/machining/CH8.PDF
- v.http://www.efunda.com/processes/heat_treat/introduction/heat_treatments.cfm
- vi.http://web.iitd.ac.in/~suniljha/MEL120/L4_Heat_Treatment_of_Metals.pdf
- vii. http://www.technologystudent.com/equip1/heat1.html

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. Anju Rawlley, Professor, Dept. of Applied Sciences
- Dr. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences