GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

LINEAR ELECTRONIC CIRCUITS (Code: 3332405)

Diploma Programme in which this course is offered	Semester in which offered
Power Electronics	3 rd semester

1. RATIONALE

Operational amplifier is one of the most common electronic circuits in most electronic equipment. To maintain linear electronic circuits, it is essential to test the performance of operational amplifiers. Hence, this course deals with all those aspects of operational amplifiers with positive and negative feedback for various configurations. Therefore, undertaking this course will help to maintain the linear electronics circuits comprising of the operational amplifiers.

2. COMPETENCY (Programme Outcome according to NBA Terminology)

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain linear electronic circuits comprising of operational amplifiers.

Total Marks	cheme Il Marks	mination S Practica	Exar Theory Marks		n Hours) Total Credits (L+T+P)		Teaching Scheme (In Hours)		
4.50	PA	ESE	PA	ESE	С	Р	Т	L	
150	30	20	30	70	5	2	0	3	

3. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning Outcomes	Topics and Sub-topics
Unit	('Course Outcomes' in	
0	Cognitive Domain according to	
Linit I	1a Identify various types of ICs	1.1. Linear Integrated circuits: classification
Introduction	and packages.	packages, pin identification, temperature
to	F8	range and other parameters.
Operational	1b. Explain the working of	1.2 Amplifier: transistor differential pair,
Amplifiers	differential amplifier	differential amplifier with constant
		current bias.
	1c. Describe the block diagram	1.3 Operational amplifier: definition, block
	of Op-amplifier.	mirror concept
		inition concept
Unit – II	2a. Define the parameters of OP-	2.1. Opamp Parameters: input offset voltage,
Performance	AMPS.	and current, input bias current,
of Op-Amps		differential input resistance, input
		capacitance, offset voltage adjustment
		range, input voltage range, common mode
		rejection ratio, supply voltage rejection
		ratio, large signal voltage gain, output
		voltage swing, output resistance, output
		short circuit current, supply current,
		slow rate, gain bandwidth product
		siew rate, gain bandwidth product,
		offset voltage and current noise
	2b Describe the characteristics	2.2 Onamp: Characteristics of ideal on-amp
	of ideal opamps.	equivalent circuit, virtual ground.
	2c. Explain the working of	2.3. Open loop configuration: inverting, non-
	inverting and non-inverting	inverting opamps
	types of opamps	
	configurations.	
	2d. State the steps to test the	
	performance of opamps	
Unit – III	3a Explain working of voltage	3.1 Voltage series feedback: negative
Op-Amp with	series feedback amplifier.	feedback, closed loop voltage gain.
Negative		difference input voltage
Feedback	3b. Explain working of voltage	3.2. Voltage shunt feedback: closed loop
	shunt feedback amplifier.	voltage gain, inverting input terminal at
		virtual ground, current to voltage
		converter, inverter
	3c. Explain the working of	3.3. Differential amplifier: with one opamp,
	differential amplifiers.	two opamps
Unit – IV	4a. Differentiate between AC	4.1. Amplifier: AC, DC, AC amplifier with
Linear	and DC amplifier	single supply
Applications	4b. Distinguish the working of	4.2. Summing, scaling and averaging
	Summing, Scaling and	amplifier
	Averaging amplifier	
	4c. Discriminate the working of	4.3. Voltage to current converter with

Unit	Major Learning Outcomes ('Course Outcomes' in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
	voltage to current converter, Integrator, Differentiator and instrumentation circuits.	grounded load, Integrator, differentiator, instrumentation amplifier.
Unit – V Comparators and	ors5a. Select the relevant comparators for any given linear circuit5.1. Comparator: characteristic comparator, Zero crossing Schmitt trigger and limitati	
Converters	 5b. Explain the working of Digital to Analog converter 5c. Describe the working of Analog to Digital converter 	 5.2. Digital to analog converter: binary weighted, R- 2R 5.3. Analog to digital converter: successive approximation, continuous type.

5. SUGGESTED SPECIFICATION TABLE (THEORY)

	Unit Title	Teaching Hours	Distribution of Theory Marks			
Unit			R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction to Operational Amplifiers	6	4	3	2	9
II	Performance of Op-Amps	8	2	8	4	14
III	Op-Amp with Negative Feedback	10	3	6	8	17
IV	Linear Applications	9	2	8	5	15
V	Comparators and Converters	9	4	7	4	15
	Total	42	15	32	23	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only course outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of *Programme Outcomes/Course Outcomes in affective domain* as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA terminology)	Approx. Hrs. Required
1	Ι	Interpret the parameters of given Op-Amplifier.	1
2	Ι	Test differential transistor amplifier with constant current bias.	2

S.	Unit	Practical/Exercise	Approx.	
No.	No.	(Course Outcomes in Psychomotor Domain according to NBA	Hrs.	
		terminology)	Required	
3	II	Test open loop inverting amplifier.	1	
4	II	Test open loop Non inverting amplifier.	1	
5	II	Test open loop differential amplifier.	1	
6	III	Test closed loop inverting amplifier.	1	
7	III	Test closed loop non-inverting amplifier.	1	
8	III	Test differential amplifier circuit using one op-amp.	1	
9	III	Test differential amplifier using two op-amp.	2	
10	IV	Test AC amplifier using single supply.	1	
11	TV.	Test Summing amplifier using inverting and non-inverting	2	
11	1 V	configuration.	2	
12	IV	Test Averaging amplifier using inverting and non-inverting	2	
12	1,	configuration.	2	
13	IV	Test Subtractor using inverting, non-inverting and differential	2	
	1.	configuration of Op-amp.	1	
14	IV	Test voltage to current converter.	2	
15	IV	Test Integrator circuit and observe the output waveform.	2	
16	IV	Test differentiator circuit and observe the output waveform.	2	
17	V	Check the performance of zero crossing detector and observe the	1	
17	•	output waveform.	1	
18	V	Determine the frequency of Schmitt trigger circuit and observe the	2	
10	•	output waveform.		
19	V	Obtain the output of 4-bit D-A Converter circuit consist of op-	2	
17	•	amp as major component.	<i>L</i>	
20	V	Measure the output of the A-D converter circuit consist of op-amp	2	
20	•	as major component.	<i>L</i>	
		Total	33	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Collect different datasheet of Op-Amp and list the parameter values that are affecting the operation of op-amp while operating.
- ii. Make universal test board for op-amp to check the performance of various circuits build using op-amp and discrete components.
- iii. Observe the output parameter values as well waveform using simulation and compare it with practical results.
- iv. Make a comparative table for the comparison various op-amps parameters.

8. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation films on working of different types of Op-Amps.
- ii. Give assignment/mini projects based on application of Op-Amps.

9. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Op-Amps and Linear Integrated	Gavakwad P A	PHI Learning, New Delhi, 2009, 4 th
1	Circuits	Gayakwad K. A.	edition or latest
2	Electronic devices and circuits	Curato I D	S. K. Kataria & Sons, 2012, 3 rd
		Gupta J. B.	edition or latest
2	Op-Amps and Linear Integrated	Sharma conicu	S. K. Kataria & Sons (2012), 2 nd
3	Circuits	Sharma sanjay	edition or latest
4	Linear Integrated Circuits and	Bakshi U. A.,	Technical Publications (2010),
	Applications	Godse A. P.	Pune, 1 st edition or latest

B) List of Major Equipment/Materials with Broad Specifications

- i. Digital multicenter(3-3/4 digit)
- ii. Oscilloscope(50Mhz,2 channel)
- iii. Function Generator(50Mhz)
- iv. DC power supply(-30V-0-30V DC
- v. Circuit boards/Educational Kits
- vi. Breadboards, soldering station.

C List of Software/Learning Websites

- i. PSIM
- ii. CASPOC
- iii. OrCAD
- iv. http://www.electronics-tutorials.ws/opamp_0pamp_1.html
- v. http://educypedia.karadimov.info/electronics/electronicaopening.htm
- vi. http://www.analog.com/library/analogDialogue/archives
- vii. www.nptel.com

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S. A. Patel**, LPE, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat
- **Prof (Smt.) J. M. Patel**, ALPE, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat

Coordinator and Faculty Members from NITTTR Bhopal

- Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- A.S. Walkey, Associate Professor, Department of Electrical and Electronics Engineering.