GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Advanced Chemistry (Code: 3335201)

Diploma Programme in which this course is offered	Semester in which offered
Diploma Ceramic Technology	Third Semester

1. RATIONALE

Ceramic Technology is the science of creating objects from the material that are inorganic and non-metallic. Though ceramic is related to fine art yet it requires a thorough working knowledge.

Advanced chemistry is an intensive study of matter and the changes that matter undergoes. The study of chemistry at this level requires a sound appreciation of basic principles without which it is difficult to understand the many facts of the science. Students in this course will attain a depth of understanding of fundamentals and a reasonable competence in dealing with chemical problems. This course will contribute to the development of each student's ability to think clearly and to express their ideas.

2. COMPETENCY

Understand behaviour and Basic chemistry of ceramic materials, electrolytes and different types of a analytical solutions. Perform chemical analysis of ceramic materials and products.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Scheme	Total Credits		Exami	nation Scheme				
(In Hours)		ours)	(L+T+P)	Theory Marks		Theory Marks Practical		ctical	Total	
								Ma	rks	Marks
L	Т	Р	С	ESE	PA	ESE	PA	150		
4	0	2	6	70	30	20	30	100		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Major Learning Outcomes Topics and Sub-topics Unit Explain characteristics Introduction 1.a. of different states of 1.1 States of Matter - Solid, Liquid and matter Gas Unit – I 1.1.1 Characteristics of different states 1.b. Describe the interof matter conversion of Matter 1.2 Changes of State of Matter Matter 1.3 Inter-conversion of Matter 1.c. Explain kinetic theory 1.4 Kinetic theory of Matter of matter Compare Introduction 2.a. types of solutions 2.1 Comparison of properties of true solutions, colloids and suspensions. 2.2 Colloids – Dispersion medium and 2.b. Explain types of colloids Dispersed phase 2.3 Types of Colloidal Dispersion 2.c. Classify colloids 2.4 Classification of Colloids 2.5 Methods of Preparation of 2.d. Describe methods of Colloids/Sols preparation of colloids 2.5.1 Dispersion methods 2.5.2 Condensation methods Unit – II 2.e. Explain purification of 2.6 Purification of Colloidal Dispersion colloids 2.6.1 Dialysis and Electrodialysis 2.6.2 Ultra-filtration **Colloids** 2.f. Explain properties of 2.6.3 Ultra-centrifuging colloids 2.7 Properties of Colloids 2.7.1 Colligative Properties 2.g. State the applications 2.7.2 Optical Property – Tyndall Effect 2.7.3 Kinetic Property – Brownian of colloids Movement 2.7.4 Electrophores is 2.7.5 Coagulation 2.8 Emulsion 2.9 Applications of Colloid Chemistry 3.a. Explain the differences Introduction 3.1 Differences between and absorption absorption and adsorption and adsorption 3.2 Types of Adsorption 3.2.1 Physical adsorption 3.b. Describe the types of 3.2.2 Chemical adsorption adsorption Unit – III 3.3 Factors influencing adsorption 3.c. Comprehend 3.4 Adsorption Isortherms the Absorption 3.4.1 Freundlich adsorption isotherm different factors and affecting adsorption 3.4.2 Lanmuir adsorption isotherm Adsorption 3.5 Applications of Adsorption 3.6 Role of Adsorption in Catalytic 3.d. Explain adsorption isotherms reactions 3.e. State the application of adsorption

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	3.f. Explain the role of	
	adsorption in catalytic	
	reactions	
	4.a. Explain the terms of	Introduction
	Phase rule	4.1 Phase Rule
		4.1.1 Phase
	4.b. Describe one	4.1.2 Components
	system	4.1.5 Degrees of Fleedolli 4.2 Phase Diagrams
	system	4.2 Flidst Diagrafils 4.3 One Component System
Unit – IV	4 c Explain two	4.3 1 Water Systems
	components and three	4.4 Two component systems
Phase Rule	components systems	4.4.1 Al2o3-Sio2 Phase diagram
	1 5	4.4.2 Sio2-Na2o Phase diagram
	4.d. State the applications	4.4.3 Mgo-Al2o3 Phase diagram
	and limitations of	4.5 Three component Systems
	Phase rule	4.5.1 Al2o3-Sio2-Na2o Phase diagram
		4.5.2 Al2o3-Sio2-Mgo Phase diagram
		4.5.3 Sio2 - Na2o – Cao Phase diagram
		4.5 Applications of Phase Rule
	5 . Evaluin the verieus	4.6 Limitations of Phase Rule
	J.a. Explain the various	5 1 Catalyst and Catalysis
T T •4 T 7	of catalysis and	5.1 1 Types of catalysis
Unit - V	industrial catalysis	5.1.2 Theory of catalysis
		5.2 Types of Catalyst
Catalysis and	5.b. List the industrial	5.2.1 Positive catalyst
Catalysis	applications of	5.2.2 Negative catalyst
	catalysts	5.2.3 Auto catalyst
		5.3 Catalytic promoter and Catalytic
		inhibitor 5.4 Industrial amplications of actalusts
	6 a Dagariba tha differen	5.4 Industrial applications of catalysts
	types of chemical	6.1 Theory Of Valence
	bonds	6.2 Arrangement of electrons in s p d f
	00mmb	orbitals
	6.b. Explain various	6.3 Electron configuration of elements
	properties of material	6.4 Types of chemical bonds
∐nit – VI	formation	6.4.1 Ionic (Electrovalent) bond & its
Chit VI	Tormation	6.4.2 Covalent bond & its
Chemical		characteristics
Bonding		6.4.3 Co-ordinate bond & its
0		characteristics
		6.4.4 Metallic bond, Explanation of
		Metallic properties.
		6.4.5 Hydrogen bond, its types and
		51gillicalice 6.4.6 Intermolecular force of attraction
		(van der Waals bond)
Unit – VII	7.a.List out of various	7.1 Details of apparatus required for
	apparatus required for	chemical analysis of ceramic materials
Chemical	chemical analysis of	And Finished products.

Unit	Major Learning Outcomes	Topics and Sub-topics		
Analysis of	ceramic materials			
ceramic	7. b Prepare solution for	7.2 Methods of preparing solutions for		
materials	chemical analysis and	examination such as water solution,		
	their classification and	acid solution and insoluble solutions.		
	calculation.	7.3 Details about the different types of		
		soluble such as water soluble, acid		
	7.c. Describe the	Soluble and insoluble. Method of		
	concentration terms of	calculating the amount of water soluble,		
	solutions	water soluble radicals, For knowing the		
		method of filtration.		
	7.d. Solve the numerical	7.4 determination of total dissolve solid by		
	based on different	different methods such as gravimetric		
	concentration terms	method and Conductivity method.		
	related to solutions	7.5.1. Types of Solutions		
		7.5.2. Concentration terms of solutions		
	7.e. Explain standard	7. 5.2.1 Normality		
	solutions and stock	7. 5.2.2 Molarity		
	solutions	7. 5.2.3 Molality		
		7. 5.2.4 Formality		
		7. 5.2.5 Mole-fraction		
		7. 5.2.6 % w/w		
		7. 5.2.7 % w/v		
		7. 5.2.8 % v/v		
		7. 5.2.9 ppm		
		7. 5.3. Standard solutions		
		7. 5.4. Stock solutions		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

	Unit Title	Toophing	Distribution of Theory Marks			
Unit		Hours	R	U	Α	Total
		110015	Level	Level	Level	Marks
1	Matter	3	2	4	0	6
2	Colloids	8	4	6	2	12
3	Absorption and	4	2	1	2	Q
	Adsorption	4	Δ	4	2	0
4	Phase Rule	5	3	5	2	10
5	Catalysts and Catalysis	4	2	4	2	8
6	Chemical Bonding	7	4	6	2	12
7	Chemical analysis of	11	4	6	4	1/
	ceramic materials	11	4	0	4	14
	Total	42	21	35	14	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Practical/Exercise	
1	-	Study of Ceramic Chemistry's Laboratory.	2
2	-	Study adjustment of Analytical balance.	2
3	7	Prepare stock solutions of NaOH, Ca(OH) ₂ .	2
4	7	Prepare standard solutions of H ₂ SO ₄ , HCl	2
5	7	Prepare standard solution of NaCl,	2
6	7	Standardize KMnO ₄ solution by preparing standard oxalic acid.	2
7	7	Standardize $Na_2S_2O_3$ solution by preparing standard potassium dichromate.	2
8	7	Find out strength of given acidic solution using standard solution of base.	2
9		Determine pH-Values of given samples of solutions by using Universal indicator and pH meter.	2
10	7	Make chemical analysis of clay, quartz, potash feldspar.	4
11	7	Make chemical analysis of soil, cement, lime, refractory.	4
13	7	Determination of silica (SiO ₂), ferric oxide, titania (TiO ₂).	4
14	7	Determination of alumina (Al ₂ O ₃), lime (CaO), magnesia (MgO).	4
15	7	Estimation of calcium in limestone or dolomite.	4
		Total	38

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Teacher guided self-learning activities.
- Course/topic based internet based assignments.
- Library survey regarding Engineering Material used in different industries.
- Industrial Visits of one or two Industries.
- Quiz & Brain storming session related to ceramic materials & utilization of ceramic materials for different purposes. These could be individual or group-based

8. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1.	Text book of Physical Chemistry	Samuel Glasstone	D.VanNostrand Company, Inc. Newyork and London

2.	Text book of Engineering Chemistry	C. P. Murthy, C. V. Agarwal, A. Naidu	B S Publications, Hyderabad www.bspublications.net
3.	Engineering Chemistry	N. Krishnamurthy P.Vallinayagam D. Madhavan	Prentice-Hall of India Pvt. Ltd. New Delhi
4.	Engineering Chemistry	O.P. Aggarwal	Khanna Publishers, Delhi
5.	Technical Methods of Analysis	Roger Castle Griffin	McGraw-Hill Book Company, Inc. New York and London
6.	Quantitative Analysis	V. Alexeyev	MIR Publishers, Moscow

B. List of Major Equipment/Materials

Sr.	LIST OF THE EQUIPMENTS	QUANTITY REQUIRED
NO.		REQUIRED
1	Indane gas Connection (DBC)	1
2	Exhaust Fan	3
3	Chemical Balance/Analytical Balance	3
4	Weight box	2
5	Fractional weight box	5
6	pH meter	1
7	pH paper	10
	GLASSWARES (To conduct laboratory for a ba	tch of 22)
1	Burette 50cc	25 nos
2	Pipette 10 cc	30 nos
3	Pipette 20 cc	30 nos
4	Conical Flask 250cc	50 nos
5	Funnel 3" (Polythene)	30 nos
6	Porcelain Tile 6x6"	30 nos
7	Measuring Cylinder 100cc	5 nos
8	Measuring Cylinder 30cc	5 nos
9	Measuring Cylinder 10cc	5 nos
10	Reagent Bottle (White) 250cc	250 nos
11	Reagent Bottle (White) 125cc	100 nos
12	Reagent Bottle (Amber) 250cc	100 nos
13	Test tube Stand	30 nos
14	Test tube Holder	30 nos
15	Test tube Cleaning brush	30 nos
16	Glass Trough	1 no

17	Beaker 1000 cc	5 nos
18	Beaker 500 cc	5 nos
19	Beaker 250 cc	5 nos
20	Test-tubes	300 nos
21	Glass Rods	2 kg
22	Watch Glass 3"	30 nos
23	Wash Bottle (Polythene) 250cc	30 nos
24	Tongs	30 nos
25	Nickel Spatula	10 nos
26	Kipps Apparatus	1 nos
27	Burner Nipple	30 nos
28	Bunsen Burner for gas connection	6 nos
29	Wire Gauge with asbestos center	6 nos
30	Plastic Buckets	6 nos
31	Tripod Stand (Iron)	6 nos
32	Filter Paper Roung sheets	400 nos
33	Measuring flask 250cc	35 nos
34	Measuring flask 100cc	35 nos
35	Dropper	20 nos
36	Burette Stand – Wooden 6x4x18"	35 nos
37	Burette clamp with boss head	35 nos
38	Plastic Beaker 100ml	40 nos

C List of Software/Learning Websites

- (a) www.chemistryteaching.com
- (b) en.wikipedia.org/wiki/chemistry
- (c) www.chm1.com
- (d) www.em-ea.org
- (e) www.ce.sc.edu
- (f) www.chemistry.msu.edu

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. Shri D. B. Chhag, Lecturer in Chemistry, Science Department, L.E. College (Polytechnic), MORBI.
- 2. Shri B.B.Patel, Lecturer in Ceramic, Ceramic Department, L.E. College (Polytechnic), MORBI.