GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT Course Curriculum

MATERIALS & METALLURGY (Code: 3335503)

Diploma Programme in which this course is offered	Semester in which offered		
Fabrication Technology	3 rd Semester		

1. RATIONALE

The polytechnic graduate is required to select and use metals, non-metals and other engineering materials for fabrication works. Knowledge and skills about metallurgy is essential for fabrication engineers. Metallurgy is the materials science that studies the physical and chemical properties of metals, and their metallic compound / mixtures, which are called alloys. Metallurgy is also the technology of metals: the way it is applied to their practical use. This course is intended to provide knowledge and skills of metallurgy and engineering materials, along with its codes and standards (ASME/EN/ASTM/SAE), which are in use in fabrication industries. The course also covers cladding metals and heat treatment of metal as per ASME SEC VIII DIV 1 UCS 56. The course develops understanding of commercial form of metals applicable in fabrication industry. This course intends to provide adequate knowledge and skills about materials for fabrication. Therefore learning this course is must for all fabrication engineers.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency:

• Select appropriate metals, alloys and cladding materials along with required treatment processes to fulfil the requirement of products to be fabricated.

3. TEACHING AND EXAMINATION SCHEME

Tea	ching S	cheme	Total Credits	Examination Scheme				
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	Т	P	C	ESE	PA	ESE	PA	150
4	-	2	6	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

4. DETAILED	Major Learning			
Unit	Outcomes (Course	Topics and Sub-topics		
0.111	Outcomes in cognitive	Topics und sus topics		
	domain as per NBA			
	terminology)			
	1a. Describe materials	1.1 Material science & metallurgy.		
Unit – I	classification and	1.2 Engineering materials : classification &		
	properties	requirement.		
Introduction	1b. Describe commercial	1.3 Properties of engineering materials.		
to Material	forms of available			
Science &	materials.	1.4 Effect of mechanical properties on service &		
Engineering	1c. Select material for	fabrication requirement.		
Material	different service and	1.5 Selection of materials.		
	fabrication application	1.6 Commercial forms of materials available		
		1.7 Difference of metals and non-metals.		
	2a. Describe properties,	2.1Introduction & classification,		
Unit– II	application and types	2.2 Chemical composition, types, properties &		
	of various ferrous	application of		
Ferrous	metals used in	2.2.1 Pig Iron & Cast Iron		
Metals	fabrication industry	2.2.2 Steel & its types		
1,10,000	2b. Explain effects of	2.2.3 Alloy steel		
	alloying elements on	•		
	properties of steel and	2.2.4 Tool steel		
	cast iron	2.2.5 Stainless steel		
		2.2.6 HSLA steel		
		2.3 Effect of alloying elements on properties of		
		Steel		
		2.4 Effect of alloying elements on properties of		
		cast iron		
	3a. Describe properties,	3.1 Chemical composition, properties &		
Unit– III	Application and types	application of		
	of various non-	3.1.1 Copper & its alloys		
Non Ferrous	ferrous metals used in	3.1.2 Aluminium & its alloy		
Metal	fabrication industry	3.1.3 Ni & its alloy		
	3b. Differentiate between	3.1.4 Titanium & its alloy		
	ferrous and non-	3.1.1 Humani & its andy		
	ferrous metals.			
	4a. Select the material	4.1 Requirement & Classification of High &		
Unit– IV	for high & low	Low		
	temperature service	Temperature service materials		
Miscellaneous	requirement	4.2 Classification, Properties & Application of		
Materials	4b. Describe properties,	Ceramic materials, Glass, Plastic materials,		
	application and types	Composite materials, Adhesive materials,		
	of various non-	Insulating Materials, Elastomer (Rubber)		
	metallic materials for	materials, Teflon, Glass-wool materials		
	fabrication industry	4.3 Cladding Materials Objective of cladding,		
	4c. Explain methods and	available forms of cladding material,		
	application of	Methods of cladding, Application of		
	cladding	Michious of clauding, Application of		

Unit	Major Learning Outcomes (Course Outcomes in cognitive domain as per NBA terminology)	Topics and Sub-topics		
	material in fabrication industry	cladding of cladding		
Unit– V Physical Metallurgy	5.a. Describe metal structure, metallography and cryatallography 5.b. Explain IC & TTT diagram and its use in fabrication industry 5.c.Explain effect of grain size on Mechanical properties of material.	 5.1 Crystallography Type of solid, Structure of atoms, Space lattice, Unit cell 5.2 Study of different crystal structure of metal like SC, BCC, FCC, HCP 5.3 Introduction & types of solid solution 5.4 Phase diagram 5.5 Iron Carbon system & TTT diagram 5.6 Solidification of metal 5.7 Metallography 5.8 Effect of grain size on Mechanical properties of material 		
Unit– VI Heat Treatment	 6.a Describe heat treatment and its classification. 6.b Explain principle and application of heat treatment processes in fabrication industry. 6.c Describe Austempering, Martempering Maraging, & Case Hardening. 	 6.1 Definition & Classification of heat treatment process 6.2 Purpose & Principles of heat treatment Process 6.3 Introduction to annealing, normalizing, hardening by quenching, tempering process, Austempering, Martempering & Maraging Case Hardening & Surface treatment 		
Unit– VII Material Codes & Standards	7a.Describe chemical composition, mechanical properties and application of various metals from various codes and standards.	 7.1 Need, Scope & importance of codes & standards in industries 7.2 Introduction of codes and standard ASME-II-A,B,C,D,DIN,ASTM,BIS,EN,JIS 7.3 Chemical composition, mechanical properties & application of coded materials used in industries such as: BIS 2002, 2062 etc. SA 515, 516, 105, 106, 336, 386 etc SS 304, 304L, 316, 316L, 310, 321, 347 etc EN-8 etc 7.4 Study of material test certificate with reference to ASME code 		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title	Teaching Hours	Distribution of Theory Marks				
No.			R	U	A	Total	
			Level	Level	Level		
1	Introduction to Material Science &	05	2	2	2	06	
1	Engineering Material	03	2	2	2	00	
2	Ferrous Metals	12	4	6	5	15	
3	Non Ferrous Metal	08	2	4	2	08	
4	Miscellaneous Material	08	4	3	4	11	
5	Physical Metallurgy	12	4	6	5	15	
6	Heat Treatment	07	2	3	4	9	
7	Material Codes & Standards	04	2	2	2	6	
	Total	56	20	26	24	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

6. SUGGESTED LIST OF EXERCISE/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain

.S. No.	Unit	Exercise/Experiment (Course Outcomes in Psychomotor	
	No.	Domain according to NBA Terminology)	Hours
			required
1	V	Demonstrate use of metallurgical microscope	02
2	V	Prepare specimen for microscopic examination	04
3	II	Determine microstructure of ferrous metals	04
4	III	Determine microstructure of non ferrous metals	04
5	VI	Demonstrate functioning of heat treatment furnace and	02
	V I	thermocouple pyrometer	
6	VI	Analyze effect of quenching media on hardness of steel	04
7	VI	Demonstrate case hardening process for steel	04
8	VI	Perform heat treatment of steel as UCS 56	04
Total			28

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Read fabrication drawing and prepare a report on MOC and classify the material from it.
- ii. Write report on properties of given materials
- iii. Write report on alloy steel and effect of different alloying elements on properties of steel
- iv. Write report on High strength Low Alloy (HSLA) steel
- v. Write report on cladding material used in fabrication industry
- vi. Draw drawing sheet / sketch book of IC, TTT and Cooling curve & TTT diagram,
- vii. Micro constituents on ferrous, non ferrous metals and crystal structure of materials
- viii. Write report on effect of grain size on properties of material
- ix. Write report on ASME sec 2 A/B/C/D
- x. Write report on material test certificate as per ASME sec 2

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Title of Books	Author	Publication
1	Material science & metallurgy	O.P.Khanna	Dhanpat Rai publications,
			latest edition
2	Materials & Metallurgy	GBS Narang	Khanna Publisher, latest
			edition
3	Material science & metallurgy	G.R.Nagpal	latest edition
4	Heat treatment of metals	Zakhrov	latest edition
5	Materials Technology	C.M.Desai	Atul Prakashan latest
			edition
6	Engineering Materials & Metallurgy	R.K.Rajput	S. Cahand latest edition
7	Codes and standard ASME II-A/B/C/D,		
	ASTM, BIS		

B. List of Major Equipment/ Instrument

- a. Metallurgical microscope
- b. Different grade sand paper with setup
- c. Etchants

C. List of Software/Learning Websites

i.http://en.wikipedia.org/wiki/Materials_science

ii. http://www.castlemetalsuk.com/blog/ferrous-nonferrous-metals-uses/

iii. http://web.iitd.ac.in/~suniljha/MEL120/L4_Heat_Treatment_of_Metals.pdf

iv.http://www.cmse.ed.ac.uk/MSE3/Topics/MSE3-ferrous1.pdf

v.http://www.youtube.com/watch?v=98lh5Q0M0cg

vi.http://www.youtube.com/watch?v=H9GrDMbwbdA

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. P.B.PATHAK, I/C HOD**, Dept of Fabrication Technology, Sir B.P.I., Bhavnagar
- **Prof. B.K.GANDHI,** Sr. Lecturer, Dept of Fabrication Technology, Sir B.P.I., Bhavnagar
- **Prof. S.Y.MERCHANT,** Sr. Lecturer, Dept of Fabrication Technology, Sir B.P.I., Bhavnagar

Coordinators and Faculty Members from NITTTR Bhopal

- **Dr. A.K. SARATHE,** Associate Professor, Department of Mechanical Engineering.
- **Dr. C.K.CHUGH**, Professor, Department of Mechanical Engineering.