GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROPROCESSOR AND ASSEMBLY LANGUAGE PROGRAMMING (Code: 3340302)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering	4 th Semester

1. RATIONALE

Microprocessors are being excessively used in the field of medical instrumentation. This course is intended to help the students to understand the architecture and programming of a typical Microprocessor. The course will also deal with the architecture and introduction to 8085 and other advanced microprocessors. The course in addition, will provide knowledge of block diagram of some microprocessor based medical equipment. Therefore, this course is designed to develop in students the requisite cognitive and practical skills in performing effectively as biomedical engineer.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competencies:

• Interface the medical equipments and it's attachments with microprocessor.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify different blocks of microprocessor.
- ii. Correct the instructional syntax errors.
- iii. Develop logic for data transfer and arithmetic and logical operations.
- iv. Develop logic for branching and looping operations.
- v. Identify different blocks of advance microprocessor.
- vi. Enlist microprocessor based medical equipments.

Tea	ching Scl	heme	Total	Examination Scheme						
(In Hour	s)	Credits (L+T+P)	Theory Marks		Theory Marks			ctical arks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	150		
4	0	2	06	70	30	20	30			

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(in cognitive domain)			
Unit – I	1a.Draw and explain basic	1.1 Microprocessor Architecture		
Micro-	architecture of	and its operation:		
processor	Microprocessor.	Microprocessor initiated		
Architecture &	1b.Explain the difference	operations and 8085 bus		
Micro-	between Von Neumann and	organization, internal data		
processor	Harvard architecture.	operations and 8085 registers.		
system	1c.Draw and explain block			
	diagrams of bus	1.2 Memory: Memory organization,		
	organization,	memory map, memory read		
	Functional,	and writes.		
	Programming model,			
	Pin-out diagram,	1.3 Microcomputer system		
	Signaling Diagram.			
	1d.Describe the	1.4 Microprocessor 8085: Block		
	Microcomputer	diagram, address and data bus,		
	System.	control and status signals,		
	1e.Describe the data bus,	power-supply and clock		
	control signals, power	frequency, interrupts and		
	supply and clock	externally initiated operations,		
	frequency, Serial I/O	serial i/o ports, bus timings,		
	ports and timing signal	flags.		
	diagram.			
Unit– II	2a. Classify various Instruction	2.1Instruction classification: Review		
8085	set.	of 8085 operations		
Instruction and	2b. Describe different	2.2Instruction Formats: Single		
Timing	instruction syntax and its	bytes, two bytes and three		
	emory occupation.	bytes instructions, op-code		
	2c. Write simple programs	format, instruction timings		
	using different instructions.	and operation status, simple		
		programs.		
Unit– III	3a.Explain different	3.1 Data transfer instructions.		
8085	addressing modes.	3.2 Arithmetic instructions.		
Instruction set	3b.Explain the purpose of	3.3 Logical operations.		
	various instructions.	3.4 Branch operations.		
	3c.Use instructions to write	3.5 Stack, I/O and Machine control		
	simple program.	Instructions.		
		3.6 Simple programs using 8085		
		instructions.		
Unit – IV	4a. Describe different types of	4.1. Looping, counting and		
Programm-ing	programming techniques.	indexing.		
Techniques	4b. Write simple programs on	4.2. Logic operations		
	different programming	4.3. Counter and timing delays.		
	techniques.	4.4. Stack and subroutines.		
		4.5. Code conversion, BCD		
		arithmetic and 16 bit data		
		operations.		

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics		
Unit – V		5.1 8086 /8088 architecture.		
Advance	block diagrams of	5.2 32 bit Microprocessor 80386:		
Microprocessor	8086/8088 processors.	Introduction/Architecture		
and its medical	5b. Draw and explain block	5.3 The Intel Pentium processor:		
applications.	diagram of Pentium	Internal block diagram		
	processor	5.4 RISC processor: Introduction		
	5c. Describe the RISC processor	& features.		
	with its features.	5.5 Human body temperature		
	5d. Draw and explain block	measurement using		
	diagram of temperature	microprocessor.		
	monitoring system and	5.6 Microprocessor based		
	ECG.	Electrocardiograph		
		(ECG)monitoring system.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Microprocessor Architecture & Microprocessor system	12	14	07	00	21
II	8085 Instruction and Timing	08	02	08	02	12
III	8085 Instruction set	14	00	06	10	16
IV	Programming Techniques	10	00	02	05	07
V	Advance Microprocessor and its medical applications.	12	10	02	02	14
	Total	56	26	25	19	70

Legends: R = Remember; U=Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	
1	Ι	Demonstrate hardware & software development tool for 8085	
2	III	Develop & execute programs on 8 bit data transfer instructions	02
3	III	Develop & execute programs on 16 bit data transfer instructions	02
4	III	Develop & execute programs on 8 bit Arithmetic instructions.	02
5	III	Develop & execute programs on 16 bit Arithmetic instructions.	02
6	III	Develop & execute programs on 8 bit Logical instructions.	02
7	III	Develop & execute programs on 16 bit Logical instructions.	02
8	III	Develop & execute programs on Machine control instructions.	02
9	IV	Develop & execute program to find bit to bit similarity between two numbers	02
10	IV	Develop & execute program to check whether given no is odd or even	02
11	IV	Develop & execute program to sum integers from 0 to 9.	02
12	IV	Develop & execute program to multiply two 8 bit numbers.	02
13	IV	Develop & execute program to move block of memory to given location and length of block is given in specific memory location	02
14	IV	Develop & execute program to find smallest number from an array of N number	02
15	IV	Develop & execute program to count negative values in given block of data.	02
16	IV	Develop & execute program to find the square of given integer using look up table method	02
17	IV	Develop & execute program to find Hex to ASCII code conversion.	02
18	IV	Develop & execute program to convert BCD number to an equivalent Hex number.	02
19	IV	Develop & execute program to sort given array of ten bytes in descending order.	02
20	V	Measure human body temperature using microprocessor.	02
21	V	Measure Electrocardiograph using microprocessor	02
Total H	rs (Perfor	rm practical worth 28 hours such that most units are covered)	42

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Student should perform various tasks related to microprocessor in laboratory.
- ii. Student should perform various practical using 8085 simulator in laboratory.

9. SPECIAL INSTRUCTIONAL STRATEGIES

- i. Give practice for as much programming as possible
- ii. Arrange visit to nearby hospital and show features, functioning and maintenance of microprocessor based medical equipments

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Book	Author	Publication
	Microprocessor Architecture,	R.S. Gaonkar	Willey Eastern Ltd.
1.	Programming & Applications with 8085		
	and 8080 A		
2.	Introduction to microprocessor	A.P. Mathur	TMH
3.	8080A/8085 assembly language	Lance A.	PHI
5.	programming	Leventhal	
4.	The 8086/8088 family: Design, Gross &	John Uffenbeck	PHI
4.	Interfacing		
5.	Handbook of Bio-Medical	R.S.Kahandpur	PHI
5.	Instrumentation		

B) List of Major Equipment/ Instruments

- i. Microprocessor Trainer kit
- ii. Computer
- iii. Microprocessor Simulators
- iv. Microprocessor based temperature monitor
- v. Microprocessor based Electrocardiograph

C) List of Software/Learning Websites

- i. www.isro.org
- ii. http://www.electronics-tutorials.com/
- iii. http://www.efymag.com/
- iv. www.nptl.iitm.ac.in
- v. www.ocw.mit.edu

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. A. K. Bula**, Lecturer, Dept. of Instrumentation Engineering, G.P.Gandhinagar
- **Prof. N. D. Makwana**, Lecturer, Dept. of Biomedical Engineering, G.P.Gandhinagar
- **Prof. M. H. Dave**, Lecturer ,Dept. of Biomedical Engineering, G.P.Gandhinagar
- **Prof. S. S. Malkan**, Lecturer, Dept. of Biomedical Engineering, G.G.P.Ahmedabad

Faculty Members from NITTTR

- **Prof. (Ms.) Susan S. Mathew,** Associate Professor, Department of Electrical and Electronics Engineering
- Dr. S. K. Gupta, Professor and Coordinator for State of Gujarat