GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ANALYTICAL AND OPTICAL INSTRUMENTATION (Code: 3340305)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical engineering	4 th Semester

1. RATIONALE

Instruments used for analysis of different body fluids etc. constitute the largest number of instruments in use today. Optical instruments are used for internal inspection of body parts. Now days use of analytical and optical instruments has become routine in hospitals and pathological laboratories. It has therefore become necessary for students to acquire knowledge and skills to operate and maintain these instruments. This course tries to build these qualities in students.

2. **COMPETENCY**

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Operate and maintain various analytical and optical instruments

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various elements of analytical instruments.
- ii. Maintain different types of absorption instruments, colorimeter and Spectrophotometer.
- iii. Maintain different types of flame photometers.
- iv. Maintain different types of blood cell counters.
- v. Identify various types of chromatography techniques.

4. Teaching and Examination Scheme

Tea	ching Sc	heme	Total	Examination Scheme							
(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks		CreditsTheory Marks(L+T+P)		Prac Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150			
4	0	2	06	70	30	20	30	200			

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1.a. Define analytical	1.1Elements of analytical
Introduction	Instrumentation.	Instrument.
	1.b. Describe performance	1.2Performance requirements of
	Requirements of Analytical	analytical instruments such as
	Instruments.	errors in chemical analysis,
	1c. State the functional parameters	Accuracy and precision, SNR.
	of Intelligent analytical	1.3 Intelligent analytical
	Instrumentation system	Instrumentation system.
Unit– II	2.a. Describe Electromagnetic	2.1 Electromagnetic radiation:
	spectrum with Necessary	EM spectrum, interaction of
Colorimeters	diagram.	Radiation with matter.
and	2.b.Explain beer Lambert's law	2.2 Laws related to absorption of
Spectrophot	2. c. Draw and explain block	Radiation: beer-Lambert's
ometers	diagram of absorption Instrument.	law.
	2.d. List components of absorption	2.3 Absorption instruments:
	instrument and state application of	radiation source, different
	Each.	optical filters,
	2.e. Draw and explain basic	monochromators,
	components of single beam filter	photosensitive detectors, slit
	Photometer.	Width, sample holders.
	2.f. Describe application Of	2.4 Colorimeters: single beam
	spectrophotometer.	filter photometer and double
	2.g. Draw and explain block	Beam colorimeter.
	diagram of Spectrophotometer.	2.5 Spectrophotometer: optical
		System of spectrophotometer.
Unit – III	3.a. Describe principle of	3.1 Flame photometry
	Flame photometry.	3.2 Constructional details: emission
	3.b. Draw and explain	system, optical system,
Flame	block diagram of	photosensitive detectors, recording
Photometer	Flame photometer.	system
	3.c. List different types of flame	3.3 Types of flame photometers:
	Photometer.	single beam, double beam and
	3.d. State principle of clinical	recording type flame photometers,
T T 1 / T T7	flame Photometer.	Clinical flame Photometer.
Unit – IV	4.a. Define PH	4.1 PH measurement
	4.b. Describe principle of	4.2 Acid base balance
Blood Gas	PH measurement	4.3 blood pH measurement:
Analyzers	4.1. Describe principle of pU	Syringe electrode,
and Dlaad	alastrode with post	A 4 Massurement of blood pCO2
	Skotob	4.4 Inteasurement of blood pCO2
Centona	A d Describe principle of pCO2	4.5 Measurement of blood pO2
Counters	and pCO2 electrodes	4.4 DIOOU CEIL COUIILEIS:
	A a List massurement techniques	such as microscopic method
	blood cell counter	optical method electrical
	4e1 Explain working principle of	conductivity method, coulter

Unit	Major Learning Outcomes	Topics and Sub-topics
	electrical Conductivity method. 4.f. Explain working principle of optical method 4.g. Draw and explain block diagram of coulter counter	Counter method.
Unit – V	5.a. Describe principle of	5.1 Chromatography:
Chromatogr	Chromatography.	chromatography basics and
aphy and	5a1. List the types of	Its techniques.
Sterilizer	chromatograph	5.2 Gas chromatograph: parts of
Equipment	 5.b. Explain the principle of Gas chromatograph drawing block diagram and state function of each Component . 5b1. List the detectors used in it 5b2. List the recorders used in it 5.c. Describe principle of different liquid chromatography. 5.d. Explain principle of autoclave with its specific feature of application 	 gas chromatograph such as carrier gas, detection and recording system 5.3 Liquid chromatographs: types of liquid chromatography such as thin layer, column and paper partition chromatography 5.4 autoclave

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			y Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction	08	04	04	00	08
II	Colorimeters and	12	02	08	06	16
	Spectrophotometers	12	02	08	00	10
III	Flame Photometer	08	04	04	02	10
IV	Ph Meter ,Blood Gas Analyzers	14	08	06	04	18
	And Blood Cell Counters	14	08	00	04	10
V	Chromatography and Sterilizer	1/	08	06	04	18
	Equipment	14	08	00	04	
	Total	56	26	28	16	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	
1	I Demonstrate the working principle of single beam photometer Photometer		02
2	2 III Measure the colometric value of given bio sample with double beam colorimeter		02
3	III	Measure the colometric value of given bio sample with spectrophotometer	02
4 III Measure the %age of dissolved content value of given bio sample with flame photometer		02	
5	III	Measure the %age of dissolved content value of given bio sample with double beam flame photometer	02
6 III Measure the % age of dissolved content value of given bio sample with clinical flame photometer		02	
7 III Measure the pH value of given bio sample with pH meter		02	
8	III	Measure the %age of content value of given bio sample with gas chromatograph	02
9	IV	Measure the %age of dissolved content value of given bio sample with liquid chromatograph	02
10	IV	Autoclave the given hospital clothes, OT content using the Autoclave	02
11	All	Calibrate any two instruments for their precision or dismantle and again assemble any two instruments.	08
		Total	28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as :

- i. Student should perform various experiments in laboratory.
- ii. Student should visit Hospital and pathology laboratories in nearby locations.
- iii. Explore internet and visit websites of reputed manufacturers of analytical and optical instruments to collect specifications and details of their products and prepare a comparative report of instruments of different makes.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation films of working and maintenance of analytical and optical instruments.
- ii. Arrange visits to hospitals and pathology laboratories.

10. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
	Handbook of Analytical	R. S. Khandpur,	Tata McGraw–Hill
1.	Instruments,		Publications, 3rd edition
	Instrumental Methods of	Willard, Merritt,	CBS Publishers
2.	Analysis	Dean, Settle,	& Distributors, New Delhi,
			Seventh edition.
	Principles of Instrumental	Skoog, Holler,	Thomson books-cole
3.	Analysis	Nieman	publications, 5th edition.
1	Instrumental Methods of	Galen W. Ewing,	McGraw-Hill Book
4.	Chemical Analysis		Company, Fifth edition
5	Introduction to Instrumental	Robert D. Braun	McGraw-Hill Book
5.	Analysis		Company

A. List of Books

B. List of Major Equipment/ Instrument with Broad Specifications

i.Spectrophotometer ii.Flame photometer iii.Chromatograph iv.Blood cell counter v.Autoclave vi.pH meter vii.Colorimeter

C. List of Software/Learning Websites http://www.mywbut.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. K. Bula, Lecturer ,Dept. of Instrumentation engineering, G.P.Gandhinagar
- Prof. S. S. Malkan, Lecturer ,Dept. of Biomedical engineering, G.G.P.Ahmedabad
- Prof. N. D. Makwana, Lecturer ,Dept. of Biomedical engineering, G.P.Gandhinagar
- Prof. M. H. Dave, Lecturer, Dept. of Biomedical engineering, G. P. Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. S. S. Mathew**, Associate Professor, Department of Electrical and Electronics Engineering
- Dr S. K. Gupta, Professor and Coordinator for state of Gujarat.