GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS HEAT TRANSFER (Course Code: 3340501)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	4 th Semester		

1. RATIONALE

In almost every chemical plant heat transfer takes place (sometimes it is intentional while sometimes it is unintentional). Study of heat transfer at steady state and unsteady state is therefore important. The knowledge of the basic concepts and principles of heat transfer helps smooth and proper operation of various heat exchangers, evaporators and condensers. Using the concepts of conduction, convection and radiation heat losses through pipes, equipments and storage tanks can be estimated. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. **COMPETENCY**

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Supervise operation and maintenance of various heat transfer equipments.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Classify Modes of heat transfer
- ii. Derive equations of steady state heat transfer through wall, cylinder and sphere
- iii. Explain shell and tube heat exchangers
- iv. Explain heat transfer with phase change
- v. Calculate radiation based on radiation laws

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits		Examination Scheme									
((In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks Practical Marks		Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200			
4	0	4	8	70	30	40	60	200			

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	(in cognitive domain) 1a. Define Heat Transfer & write its'	1.1 Definition and importance of heat
Fundamental	importance	transfer in process Industries
of Heat	1b. Classify Modes of heat transfer	1.2 Modes of heat transfer
Transfer		(a) Conduction (b) Convection
		(c) Radiation
	1c. Differentiate steady state and	1.3 Steady state and unsteady state heat
	unsteady state heat transfer	transfer
Unit – II	2a. Explain Fourier's Law	2.1 Fourier's law of heat conduction with
Heat Transfer		Concepts of (a) Heat transfer rate
by Conduction		(b) Heat flux (c) Temperature gradient
~J = = = = = = = = = = = = = = = = = = =	2h Describe thermal conductivity	2.2 Thermal conductivity and its variation
	2b. Describe thermal conductivity.	
		with temp.
	2c. Derive equations of steady state	2.3 Steady state (S.S.) heat conduction
	heat transfer through wall,	through composite wall
	cylinder and sphere	2.3.1 S.S. heat conduction through
	2d. Calculate heat transfer rate	composite cylinder up to three
		layers
		2.3.2 S.S. heat conduction through
		composite sphere up to three
		layers
		2.4 Simple problems by direct use
		formula
	2e. Explain Thermal Conductivity of	2.5 Thermal Conductivity of solids,
	solids, liquids and gases	liquids and gases
	2f. Describe insulation	2.6 Hot and cold Insulation
	2g. Calculate critical radius of	(a) Optimum thickness of insulation
	insulation	(b) Lagging of steam pipe
		(b) Lugging of steam pipe
		2.7 Derivation of equation for critical
		radius of insulation and calculations
		radius of institution and calculations
Unit – III	3a.Describe types of convection	3.1 Types of Convection
Heat Transfer	sa. Describe types of convection	3.1.1 Free convection
by Convection		3.1.2 Force convection
by convection	3b. Explain Newton's Law	3.2 Newton's Law of convective heat
	50. Explain Newton's Law	transfer
	3c.Derive equation of overall heat	3.3 Individual and Overall heat transfer
	transfer coefficient	coefficient
	3d. Calculation for convection	3.4 Simple Problems of Convection
Init IV	4. Classify heat angles are	4.1 Types of heat an abanger heard on floor
Unit – IV Heat	4a. Classify heat exchanger	4.1 Types of heat exchanger based on flow
Heat	4b. Describe Double pipe heat	pattern, function and construction
exchangers	exchanger	4.2 Double pipe heat exchanger
	4c. Explain shell and tube heat	(a) Counter current (b) Co-current
	exchangers	4.3 Shell and tube heat exchanger :
	4d. Describe plate type heat	(a) 1-1 Pass (b) 1-2 Pass (c) 2-4 Pass
	exchanger	4.4 Plate type heat exchanger
	4e. Describe finned type exchanger	
	4f. Explain heat transfer in different	4.5 Finned type(extended surface) heat

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	4.6 Heat transfer in agitated vessels
	4. Derive equation and Calculate	
	4g. Derive equation and Calculate L.M.T.D.	4.7 L.M.T.D. : derivation of equation and simple calculations
	4h. Calculate overall heat transfer co-	4.8 Overall heat transfer co-efficient of
	efficient and area of heat	heat exchangers and heat exchanger
	exchangers	area
Unit – V	5a. Explain heat transfer with phase	5.1 Heat transfer with phase change
Heat Transfer	change	
with Phase Change	5b. Explain dimensionless groups	5.2 Significance of dimensionless groups
Change		(a) Prandtl No. (b) Reynold No.(c) Grashoff No. (d) Nusselt No.
	5c. Describe boiling	5.3 Phenomena of Boiling
	Se. Desende bonnig	(a) Pool and Nucleate boiling
	5d. Describe condensation and	5.4 Phenomena of Condensation
	condensers	(a) Drop wise and film wise
	condensers	Condensation
		(b) Commonly used Condensers
Unit – VI	6a. Explain radiation facts	6.1 Fundamental facts of radiation
Thermal	6b. Define radiation terms	6.2 Concepts of radiation
Radiation		(a) Emission of radiation
		(b) Wavelength of radiation
		(c) Emissive power
		(d) Black body (e) Gray body
		(f) White body (g) Opaque body
	C. Describe and indian large	(h) Monochromatic wave length
	6c. Describe radiation laws	6.3 Radiation laws(a) Kirchhoff's Law (b) Plank's Law
		(c) Stefan Boltzmann Law
		(d) Wein's law
	6d. Calculate radiation based on	6.4 Simple calculations of radiation
	radiation laws	between black surfaces
Unit – VII	7a. Define evaporation	7.1 Introduction of evaporation
Evaporation	7b. Explain characteristics of liquid	7.2 Characteristics of liquid for evaporation
	7c. Differentiate single and multi	7.3 Single and multi effect evaporation
	effect evaporation 7d. Classify evaporators	with flow arrangement 7.4 Types of evaporators
	7d. Classify evaporators	(a) Short tube evaporator
		(b) Agitated film evaporator
		(c) Long tube vertical evaporators
		(i) Forced circulation
		(ii)Upward flow [Climbing film]
		(iii)Downward flow [Falling film]
		(iv) Triple Effect Evaporator
	7e. Explain evaporator capacity	7.5 Evaporator capacity and economy
	7f. Solve simple evaporation problem	7.6 Direct use of formula for solving
		simple evaporation problems
	7g. Describe duhring's rule	7.7 Duhring's rule and its importance.

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R U		Α	Total
		Hours	Level	Level	Level	Marks
Ι	Fundamentals of Heat	2	1	2	0	3
	Transfer					
II	Heat Transfer by Conduction	12	3	4	7	14
III	Heat Transfer by Convection	6	2	2	4	8
IV	Heat Exchangers	12	4	4	7	15
V	Heat Transfer with Phase	8	2	3	5	10
	Change					
VI	Thermal Radiation	8	2	3	5	10
VII	Evaporation	8	2	3	5	10
Tota	al	56	16	21	33	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercise	Apprx.
	No.	(Outcomes in Psychomotor Domain)	Hrs.
			Required
1	II	Determine the thermal conductivity of Metal Rod	4
2	II	Determine the thermal conductivity of composite wall	4
3	III	Determine critical radius of insulating material	4
4	III	Determine the specific heat of Air	4
5	IV	Determine the overall heat transfer co-efficient in	4
		Agitated vessel	
6	IV	Determine the overall heat transfer co-efficient for air to	4
		water heat exchanger	
7	IV	Determine the liquid-liquid overall heat transfer co-	4
		efficient for shell and tube heat exchanger	
8	IV	Determine the overall heat transfer co-efficient for	4

S. No.	S. No. Unit Practical/Exercise No. (Outcomes in Psychomotor Domain)		Apprx. Hrs. Required
		horizontal double pipe heat exchanger.	
9	IV	Determine the overall heat transfer co-efficient for vertical double pipe heat exchanger.	4
10	V	Calculate the rate of condensation in Drop-wise condensation	4
11	V	Calculate the rate of condensation in Film-wise condensation	4
12	VI	Determine the emissivity using Stefan Boltzmann apparatus	4
13	VII	Determine economy of open pan evaporator.	4
14	VII Study and compare different types of Evaporators.		4
Total Hours			56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Prepare course/topic based presentation for seminars,
- ii. Visit websites of reputed companies making heat exchangers.
- iii. Teacher guided self learning activity
- iv. Organise MCQ/Quiz.

9. SPECIAL INSTRCTIONAL STRATEGY (If Any)

i. Animated videos and drawings/models of heat exchangers and heat exchange phenomenon should be shown

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Unit Operations of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004 (Seventh Edition)
2	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York 2004 (Seventh Edition)
3	Engineering heat transfer	Gupta & Prakash	Nem Chand & Brothers, New Delhi, 1999 (Seventh Edition)
4	Process heat transfer	D.Q.Kern	Tata McGraw Hill Publication, New Delhi, (Reprint 2008)
5	Unit Operation –II	Gavhane, K.A.	Nirali Prakashan, Pune 2009
6	Introduction to chemical engineering	Ghosal Salil k.	Tata McGraw Hill Publication, New Delhi, (Reprint 2006)

B. List of Major Equipment/Materials

- i. **Thermal conductivity metal rod apparatus** : Bar-445 mm, Dia 25mm, test length of bar 175 mm, 9 thermocouples on bar and 4 on insulation, Nichrome heater 400 watt, Cooling jacket 90 mm dia, Temp. Indicator 0-200 ⁰C, V-meter 0-200 V, A-meter 0-2 Amp
- Thermal conductivity composite wall apparatus : Heater Assembly-1000W, Round coil, Sandwiched, Dia-300mm; Test Specimen-Dia. 300mm, MS 20mm, Asbestos 15 mm, Wood 10mm; 8 nos. J type thermocouple, 8 Channel Digital Temperature Indicator; Assembly shall be covered with Wooden Chamber
- iii. **Critical radius of insulating material apparatus :** Heater 500 W Ni-Cr 500 mm length, Test specimen MS, Dia 50 mm,500mm; Insulation over pipe; J thermocouple 12 nos., Digital temperature Indicator; The whole assembly shall be covered with wooden chamber
- iv. **Specific heat of air apparatus :** 2 inch Cylindrical test section, 0.5 HP air blower, 3 phase 440 V Air heater, U-tube manometer with orifice; Thermocouples
- v. Agitated vessel: Tank- 10 litre SS 304 ID 200mm, Height 300mm, 1.5 mm thick, Cover –SS 304, 3 mm thick; Baffles 3 mm thick, 225 mm length, 15 mm width 4 nos., Coil- Copper, 3000 mm, ID 10 mm, OD 12.7 mm 8 turns; Heater 1 KW; Agitator- turbine, shaft 10 mm dia, speed 150 rpm max
- vi. **Double pipe heat exchanger :** Inner tube SS304 -1000mm × 25mm; Outer tube SS304, 1000mm × 25mm, 25 mm glass wool with SS304 cover; Hot and cold water tanks inner SS304, outer MS, 50Litre, Cold water tank, Heater 3 KW; Pumps -2 nos. monoblock 0.5 HP SS304; Rotameter 1-10 lpm, Glass tube, float SS 316
- vii. Shell and tube heat exchanger : 1-1 pass; Shell- ID 150 mm SS, 4 baffles with 180 mm spacing, glass wool insulation, Tubes copper 19 nos., ID 9.5 mm, 900 mm Length; Tanks -2 nos.100 litre HDPE; Pumps- 0.25 HP; Rotameters 2nos. 1.5-15 lpm; Thermocouple -4 Nos., Digital temp. Indicator 0-100^oC
- viii. **Air to water heat exchanger :** Finned tube OD 20 mm ID 16 mm; 8 fins per inch, OD 45 mm; Water supply 20 lpm, Temp indicator 0-200 ⁰C, Water inlet and drain, 0.5 HP blower for air flow, Orifice for 2 inch pipe, Butterfly valve
- ix. **Emissivity apparatus:** aluminium plates, of equal dimensions. Ni-Cr heaters sandwiched in Mica sheets one plate blackbody another natural finish, Dia. 160 mm, thickness 12mm, heater 500W, Digital temp. Indicator
- x. **Open Pan Evaporator :** Pan-Hemispherical SS 304 500mm dia, 3mm thick, Jacket- MS 525 mm dia, 3mm thick; Lagging- glasswool 40 mm with SS sheat cladding, 12.5 mm steam trap

C List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. D. H. Joshi,** Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. M R Acharya,** Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences