GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MASS TRANSFER-I (Course Code: 3340502)

Diploma Programmes in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

The operations which involve changes in composition of solutions, are known as the masstransfer operations. Mass transfer operations are required for preliminary purification of raw materials or final separation of products from by-products. Mass transfer operations are major and important activity in most of the chemical plants. Hence the course has been designed to develop the following competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Supervise operation of various equipments for, the mass-transfer operations in chemical process plants.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Discuss fundamentals of mass transfer operation.
- ii. Evaluate diffusivity of gases by using empirical equation and explain effect of pressure and temperature on diffusivity.
- iii. Explain Equilibrium and resistance concept related to mass transfer at fluid surface
- iv. Calculate numerical for absorption based on material balance
- v. Solve problem based on material balance with different condition on ternary diagram
- vi. Explain various equipment uses for liquid extraction
- vii. Explain different states of operation and equipment used for leaching.
- viii. Discuss various membrane types and membrane modules

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme					
((In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Unit	Major Learning Outcomes (Outcomes in cognitive domain)	Topics and Sub-topics		
Unit – I	1a. Describe Importance of ass transfer operation	1.1 Introduction of Mass transfer operations		
Fundamental of Mass Transfer	 1b. Classify mass transfer operations based on direct contact of two immiscible phases 1c. Explain Membrane separation operations 	1.2 Operations based on direct contact of two immiscible phases1.3 Membrane separation operations		
	 1d. Distinguish direct and indirect operations 1e. Describe selection of appropriate separation method 1f. Explain fundamental design principles of Mass Transfer 	 1.4 Direct and indirect operations 1.5 Choice of separation method 1.6 Fundamental design principles of Mass Transfer 		
Unit – II Molecular Diffusion in Fluids	 2a. Differentiate Molecular and Eddy diffusion 2b. Calculate the rate of diffusion in Fluids 2c. Distinguish Molar flux, diffusivity and concentration gradient in Fluids 2d. Apply the diffusion principal in Fluids 2e. Derive diffusivity equation 	 2.1 Molecular and Eddy diffusion 2.2 Rate of diffusion in Fluids 2.3 Molar flux, diffusivity and concentration gradient in Fluids 2.4 Applications of diffusion in Fluids. 2.5 Derivation of diffusivity equation 		
	2f. Describe the effect of various factors on diffusivity2g. Explain molecular diffusion in fluids for laminar flow	 (D_{AB}=D_{BA}) 2.6 Effect of concentration, Temperature and pressure 2.7 on diffusivity 2.8 General equation for steady state molecular diffusion in fluids for laminar flow 		
	 2h. Describe Molecular diffusion in gases 2i. Derive Equation for Steady state diffusion 2j. Evaluate diffusivity of gases using empirical equation 	 2.9 Molecular diffusion in gases 2.10 Derive Equation for Steady state diffusion of (a) Component A through non diffusing B and simple numerical (b) Equimolar counter current diffusion of A and B with simple numerical Empirical equation of diffusivity of gases 		
Unit – III Interphase Mass Transfer	 3a. Explain Equilibrium 3b. Describe Diffusion between phases 3c. Describe various mass transfer coefficients using resistance 	 3.1 Concept of equilibrium 3.2 Diffusion between phases (two resistance concept) 3.3 Local and overall two phases mass transfer co-efficient and their uses 		
Unit – IV	 concept 3d. Distinguish mass transfer co- efficients 3e. Define stage, stage efficiency and cascade 4a. Apply concept of absorption 	 3.4 Average overall mass transfer co-efficient 3.5 Stage and stage efficiency and types of Cascade 4.1 Industrial application of Absorption 		

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in cognitive domain) 4b. Describe the physical	4.2 Equilibrium solubility of gases in liquids
Gas	properties of gases	and effect of temperature and pressure.
Absorption	4c. Explain Raoults law	4.3 Ideal solution and Raoult's law
Absolption	4d. Select appropriate solvent	4.4 Solvent for absorption
	4e. Explain Material	4.5 Material balance for one component
	balance in different	transfer
	condition	1. counter current flow
	Condition	2. co-current flow
	4f. Select liquid-gas ratio for	3. counter current multistage operation
	absorber	4.6 Minimum liquid-gas ratio for absorber
	4g. Define various	4.7 Real Tray & Tray efficiency- point
	Efficiencies	efficiency, Murphy efficiency, Overall
		Tray efficiency
	4h. Explain tray tower and	4.8 Tray tower and packed tower
	packed tower	
	4i. Evaluate various packing	4.9 HETP
	4j. Calculate absorption based on	4.10 Raoult's law and material balance applied
	material balance	in gas absorption
Unit – V	5a. Apply the liquid extraction	5.1 Industrial application of Liquid
		Extraction
Liquid	5b. Describe the three component	5.2 Equilibrium for three component system
Extraction	system	5.3 Equilateral triangular co-ordinates system
	5c. Explain equilibrium using	5.3.1System of three liquids-one pair
	triangular co-ordinates	partially Soluble
	5d. Describe the effect of	5.3.2System of three liquids-two pair
	temperature and pressure	partially Soluble
		5.4 Effect of temperature and pressure on solubility
	5e. Select appropriate solvent	5.5 Criteria for choice of solvent
	5f. Distinguish various	5.6 Single stage extraction and multistage
	types of extraction	cross current extraction on ternary
	5g. Describe the material	diagram
	balance for various	5.7 Material balance for single stage,
	stages	multistage- cross current/counter
	5h. Calculate Material	current system
	balance in different	5.8 Problems based on material balance
	conditions	
	5i. Define Various	5.9 Equipment Single stage extractor,
	equipment use in	agitated vessel, flow mixer and settler,
	liquid extraction	spray tower, packed tower and
		centrifugal extractor
Unit – VI	6a. Describe Industrial	6.1. Industrial applications of leaching
. –	applications	
Leaching	6b. Prepare solids	6.2. Preparation of solid
	Explain the factors affecting	6.3. Temperature of leaching
	leaching	-
	6c. Describe different states of	6.4. Methods of operation and equipment for
	operation and equipments	(a) Unsteady state operation
		I. In place operation
		II. Heap leaching
		III. Percolation tanks

Unit	Major Learning Outcomes (Outcomes in cognitive domain)	Topics and Sub-topics		
		IV. Filter press leaching		
		V. Agitated vessel		
		VI. Leaching by Shanks system		
		(b) Steady state operation		
		I. Leaching during grinding		
		II. Leaching in door type agitator		
		III. Leaching in door balanced tray		
		thickener		
		IV. Continues counter current decantation		
		with flow sheet		
		V. Leaching of vegetable seeds		
		1. Rotacel		
		2. Kennedy extractor		
		3. Bollman extractor		
		4. Continuous horizontal extractor		
	6d. Explain Material balance	6.5. Material balance for single stage system		
Unit – VII	7a. Describe Membrane	7.1 Introduction and Basic Principle of		
	Separation Process	Membrane Separation		
Membrane	7b. Classify membrane process	7.2 Types of Membrane Processes		
Separation	7c. Describe advantages and	7.3 Advantages and disadvantages of		
	disadvantages	membrane		
	7d. Uses membrane separation	processes		
	processes	7.4 Various applications of membrane		
		separation.		
	7e. Draw the diagram of various	7.5 Various types of membrane and		
	membrane modules	membrane		
		Modules with diagram		
		a. Plate and frame		
		b. Tubular		
		c. Spiral wound		
		d. Hollow fiber		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Fundamental of Mass	04	03	02	00	05
	Transfer					
II	Molecular Diffusion in	07	02	04	03	09
	Fluids					
III	Interphase Mass	05	02	02	02	06
	Transfer					
IV	Gas Absorption	11	02	04	08	14
V	Liquid Extraction	10	02	03	08	13
VI	Leaching	11	02	03	08	13
VII	Membrane Separation	08	02	04	04	10
Tot	tal	56	15 22 33 70			70

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as only as a guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercise	Approx.	
	No.	(Outcomes in Psychomotor Domain)	Hrs.	
			Required	
1	II	Determine diffusivity of gas-liquid system at room	4	
		temperature		
2	II	Determine diffusivity of gas-liquid system with respect to	4	
		temperature		
3	II	Determine diffusivity of liquid-liquid system at room	4	
		temperature		
4	II	Determine diffusivity of liquid-liquid system at different	4	
		temperature		
5	IV	Find out rate of absorption in a tray or packed tower	4	
6	V	Determine the efficiency of single stage extraction	4	
7	V	Determine the efficiency of two stage cross current	4	
		extraction		
8	V	Determine the efficiency of continuous counter current	4	
		extraction		
9	V	Prepare ternary diagram for a system of three liquids	4	
10	VI	Obtain tie-line data for Acetic Acid, Benzene and water	4	
11	VI	Measure recovery of salt using sand-salt mixture in single	4	
		stage leaching		
12	VI	Measure recovery of salt using sand-salt mixture in two	4	
		stage leaching		
13	VI	Calculate efficiency of Leaching by shanks system	4	
14	VII	Study and Compare different types of membrane module	4	
		with detailed diagram.		
Total H	rs		56	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Visit nearby industries and observe the working of mass transfer equipments and collect their specifications
- ii. Visit the website of reputed mass transfer equipment manufacturers and prepare a report on these equipments.

9. SPECIAL INSTRUCTIONAL STRATERGY (if any)

i. Show animated videos and drawings of mass transfer equipment

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Mass Transfer Operations	Robert E. Treybal	Mc Graw- Hill, 3 rd Edition, 1981
2	Unit Operation of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004, 7 th Edition
3	Separation Process Principles	Ernest J. Henley, J. D. Seader, D. Keith Roper	Wiley India, 2 nd Edition, 2005
4	Unit Operations-II	K. A. Gavhane	Nirali Prakashan, Pune, 2009
5	Unit Operations of Chemical Engineering, Volume-1	P. Chattopadhyay	Khanna Publishers, New Delhi, 1995
6	Chemical Engineering, Volume-2	Coulsion and Richardson	Butterworth-Heinemann; 5 th Edition, 2002
7	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York, 7 th Edition, 2004

B. List of Major Equipment/ Instrument with Broad Specifications

i. Gaseous diffusion system:

Thermostatic bath 2 litre; Temperature controller 0-100 ⁰C; Vernier 0-100 mm(0.1 mm resolution); Magnetic stirrer with heater 2 MLH; Air blower 0.25 HP

ii. Liquid diffusion system:

1 liter glass beaker, Magnetic stirrer 1 MLH, electrical conductivity sensor & meter to measure conductivity in MHO

iii. Packed column absorber :

75 mm ID, 1 m Glass column, Rasching ring packing; CO_2 cylinder with pressure regulator and rotameter; NaOH circulation system with pump, sump and rotameter

iv. Continuous extractor :

Glass column ID 75mm, OD 87mm, Height 1000mm; Supply tanks(three)-SS 304, 40 litre; Rotameters(two)-0.3 to 3 lpm-Glass tube, SS316 float; 0.25 HP motor with SS 304/316 shaft and blades

v. Leaching apparatus :

Leaching bag-Polypropylene; Glass column Dia. 40 mm, height 400mm with SS 304 cap at both end; Solvent tank SS304-25 litre with 1 KW immersion heater; Collection tank SS 304, 30 litre; Pump- MOC-Polypropylene, 15 lpm flow rate

vi. Glass Separating funnels

-250ml, 500ml ; **Burettes**-25 ml, 50 ml; **Pipettes** - 10 ml, 25 ml; **Conical flasks**- 250 ml, 500 ml; **Beakers** - 250 ml, 500 ml

C. List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Harsh B. Shukla**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Upasana T. Singh**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Jatin. R. Vadher**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences