GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MICROPROCESSOR AND ASSEMBLY LANGUAGE PROGRAMMING (Code: 3341101)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	4 th Semester

1. RATIONALE

Microprocessor is the heart of embedded system and computers. This course will provide basic knowledge of microprocessor architecture and programming in assembly language. The basic knowledge of microprocessor and assembly language programming will enable the students to learn microcontroller and embedded systems in the higher semesters. The intention of this course is to help the student to maintain microprocessor based electronic equipments.

2. COMPETENCY:

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Maintain microprocessor based electronic equipment.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyse the architecture of the Intel 8085 microprocessor for its various applications.
- ii. Develop simple arithmetic programmes
- iii. Use the addressing modes and timing diagram for executing programmes efficiently
- iv. Develop assembly language program using stack and subroutine for various applications
- v. Interface peripheral devices with 8085 microprocessor

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total Credits	Examination Scheme				e		
(In Hour		s)	(L+T+P)	Theory Marks		Theory Marks		Practi	cal Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	РА	150		
3	0	2	5	70	30	20	30			

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit Major Learning Outcomes		Topics and Sub-topics
	(in cognitive domain)	
Unit-I	1a. Define microprocessor and Diiferantiate	1.1 Microprocessor and
Microprocessor	between types of microprocessor	types of microprocessor
Architecture		
	1b. Describe the function of pins in the pin	1.1 Pin diagram of 8085
	diagram of 8085 microprocessor with a	microprocessor
	sketch.	
	1c. Define and explain dieetrant operations	1.2 Microprocessor
	performed by Microprocessor	operations
	1d. Describe the 8085 microprocessor	1.3 8085 Microprocessor
	architecture diagram with its functioning.	architecture diagram
		with its functions
	1e. Describe the register set of 8085	1.4 Register set of 8085
	1f. Describe the impact of ALU on flags of	1.5 Flag Classification
	8085	1.6 1./ Interrupt types and
	Ig. Describe interrupt and serial I/O	serial I/U
	In. Define the various types of buses and	1./ Bus organisation:
	Lioux speed.	Address & Data bus and
	address/data bus and control signal	demultileving of huses
	1 State the significance of clock speed	1.8 Clock speed
	IJ. State the significance of clock speed.	1.0 Clock speed
Unit-II	2a. Differentiate between opcode and operand	2.1 Opcode and opera
8085	with examples	
Micproprocessor		
Instruction set	2b. Define the classification of the instruction	2.2 Instructions: Data
	set	transfer, Arithmetic,
		Logical, Branch, Stack
		and I/O read and write
		cycle
Unit-III	3a. Define the need of addressing modes.	3.1 Type of addressing
Addressing	3b. Classify the various addressing modes	mode of 8085
Mode Allu Timing Diagram	3c. Differentiate between T-state, machine	3.2 T-state, Machine Cycle,
Thing Diagram	cycle and instruction cycle	Instruction cycle
	3d. Explain with sketches the timing diagram for I/O and memory read/write cycle	3.3 Timing diagram
	3e Describe the timing delay using NOP	3.4 Timing Delays
	instruction	5.4 Thing Delays
	Instruction	
Unit-IV	4a. Develop to execute simple addition and	4.1 Addition and subtraction
Programming In	subtraction programmes using the	programmes
8085	instruction set	4.2 Multiplication and
	4b. Develop to execute simple multiplication	division programmes
	and division programmes using the	
	instruction set	
	4c. Develop to execute various assembly	4.3 Looping, Counting and
	language programs using looping and	Indexing.

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	counting concept.	
	4d. Develop to execute assembly language programs using logical functions	4.4 Logic operations viz. AND, OR, NOR, NAND NOT, EXOR.
	 Develop to execute an assembly language to generate delay of specific time. 	4.5 Counter and Timing delays.
	4f. Develop to execute an assembly language sub program based on Stack and Subroutine concept.	4.6 Stack and subroutines.
Unit-V Interfacing Of 8085	 5a. Define memory mapping. 5b. Discriminate between memory mapped I/O and I/O mapped I/O 	5.1 Memory and I/O mapping.
	5c. Explain the functions of the chip selection and decoder interfacing.	5.2 Chip selection and decoder interfacing.
	5d. Interface 8085 to EPROM.	5.3 Interfacing to EPROM and R/W Memory
	5e. Sketch the interfacing circuit for LED using 74LS245	5.4 Interfacing LEDs and Switches using 74LS245
	5f. Explain the function of IC 8255 with a block diagram.	5.5 Programmable Peripheral Interface- IC
	5g. Develop to execute assembly language program to read and display the data from IC 8255 ports.	8255: Configuration, Modes and Operation

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

		Teaching	Distribution of Theory Marks			
Unit	Unit Title	Hours	R Level	U Level	A Level	Total Marks
Ι	Microprocessor Architecture	10	8	6	4	18
II	8085 microprocessor instruction set	6	2	4	4	10
III	Addressing mode and Timing Diagram	10	4	6	6	16
IV	Programming in 8085	8	2	6	4	12
V	Interfacing of 8085	8	4	4	6	14
	Total	42	20	26	24	70

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sl. No.	Unit No.	Practical/Exercise (outcome in psychomotor domain)	Approx. Hrs.
			Required
1.	Ι	Identify the components of the microprocessor trainer to	2
		configure in the programming mode	
2.	II	Develop/Execute a simple programme to move data from one	2
	<u> </u>	register to the other	
3.	II	Develop/Execute programme immediate data between different 2	
		registers	
4.	11	Develop/Execute a programme for addition	2
5.	II	Develop/Execute a programme for subtraction	2
6.	II	Develop/Execute a programme for multiplication	2
7.	II	Develop/Execute a programme for division	2
8.	III	Develop/Execute an Assembly language program to convert	2
		Hexadecimal to ASCII code conversion.	
9.	IV	Develop/Execute Assembly language program to check whether	2
	ļ	given no is odd or even	
10.	IV	Develop/Execute a programme to transfer a block of data from	2
		one memory location to another memory location	
11.	IV	Develop/Execute a programme to add two 32-bit numbers	2
12.	IV	Develop/Execute a programme to add 2 decimal numbers in BCD 2	
		format	
13.	IV	Develop/Execute a programme to convert data from grey code to	2
1.4	TT 7	binary code	
14.	IV	Develop/Execute a programme to convert data from binary code	2
15	11/	to grey code	2
15.	IV	Logical instructions	۷
16	IV	Develop/Execute an Assembly language programme to sum	2
10.	IV	integers from 0 to 9	2
17.	IV	Develop a programme to find the smallest number from an array	2
17.	1 1	of N numbers	-
18.	IV	Develop a programme to count negative values in given block of 2	
	<u>,</u> ,	data.	
19.	IV	Develop/Execute a Subroutine to find the square of given integer. 2	
20.	V	Develop/Execute an Assembly language programme to sort given	2
		array of ten bytes in descending order.	
21.	V	Develop/Execute an Assembly language programme to	2
		alternatively blink LEDs connected on Port –B of 8255 at an	

Sl. No.	Unit No.	Practical/Exercise (outcome in psychomotor domain)	Approx. Hrs. Required
		interval of 0.1 second. Draw Interface diagram.	
22.	V	Develop/Execute an Assembly language programme for 8255 to Interface keypad and display an LED	2
		Total	44

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

Following is the list of proposed student activities like:

- i. Develop unit wise topics related programs in laboratory.
- ii. Develop any module of to be useful in real life application.
- iii. Prepare Multimedia presentation of module developed by students.
- iv. Prepare the charts of block diagram, circuit diagram and timing diagrams.
- v. Interface with IC 8259,IC 8279,IC 8254,IC 8251.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. As much programming
- ii. Animation/Video presentation session.
- iii. Group discussion and seminar.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.	Title of Books	Author	Publication
No.			
1	Microprocessor Architecture	Ganonker, Ramesh	PHI Learning, New Delhi,
	Programming and Application		latest edition
2	The 8080/85 Family: Design,	Ufferbeck, John	PHI Learning, New Delhi,
	Programming and Interfacing		latest edition
3	Introduction to Microprocessor	Mathur, A.P.	TMH, New Delhi, latest
			edition
4	Microprocessor and its	Ram, B.	BPB, New Delhi, latest
	application		edition
5	Microprocessor and Interfacing	Hall, Douglas	TMH, New Delhi, latest
			edition
6	Microprocessors and	Kumar, Senthil,	Oxford University, New
	Microcontrollers	Saravanan,	Delhi, latest edition
		Jeevananthan	

B) List of Major Equipment/Materials with Broad Specifications

- i. 8085 microprocessor kits and simulator
- ii. Peripheral Interfacing circuit board of IC 8255.
- iii. CRO and Logic Analyser
- iv. Computer Systems with minimum P III processor (or equivalent) and 512 MB RAM.
- v. Multimedia Projector

C) List of Software/Learning Websites

- i. Go for free open source software wherever applicable
- ii. Simulator such as : http://8085simulator.codeplex.com/ http://gnusim8085.org/ or its

Equivalent.

- iii. Latest processor configuration : http://www.intel.com/pressroom/kits/quickreffam.htm
- iv. Intel 8085 microprocessor architecture: http://www.cpu-world.com/Arch/8085.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty from Polytechnic Group

- **Prof. D. B. Vagadia**, HOD (EC), Government Polytechnic, Rajkot
- Prof R. D. Raghani, HOD (EC), L.E. Collage, Morbi
- Prof. T. R. Parmar, Sr. Lecturer (EC), Government Polytechnic, Palanpur
- Prof. K. N. Vaghela, Sr. Lecturer (EC), Government Polytechnic, Ahmedabad
- Prof. J D Chauhan, Sr.Lecturer (EC), BBIT, Vallabh Vidhyanagar
- **Prof.** (Ms) Sthuthi Rachel Joshua, Assistant Professor, Oriental College of Engineering, Bhopal

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.** (Mrs.) Anjali Potnis, Assistant Professor, Department of Electrical and Electronics Engineering.
- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Department of Electrical and Electronics Engineering.