GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: IRON MAKING (Code: 3342102)

Diploma Programme in which this course is offered	Semester in which offered
Metallurgy Engineering	4 th Semester

1. RATIONALE:

Iron is one of the most important engineering materials which finds application in one or other form in almost every walk of life. Ferrous metals are an important group of metals for which the base material is iron. Extraction of iron from its ores is an important aspect of extractive metallurgy. A student of metallurgical engineering must be acquainted with the extraction of iron from its ore so as to be able to make its further use for any application.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Plan and Supervise Extraction of iron from the iron ore.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Classify ferrous metals and alloys
- ii. Describe the different methods of processing of iron ores.
- iii. Enumerate modern trends in iron making blast furnace
- iv. Explain brief principles of alternative methods and their advantages and limitations

4 TEACHING AND EXAMINATION SCHEME

	Total Credits Examination Scheme		Examinatio		Total Credits E		Teaching Scheme		
Total Marks	Marks	Practical	Theory Marks		(L+T+P)	(In Hours)			
	PA	ESE	PA	ESE	С	Р	Т	L	
100	00	00	30	70	03	00	00	03	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics		
Umt	(in cognitive domain)			
Unit – I	1a. Describe importance of of	1.1 Importance of iron as an engineering		
Introduction to iron	iron as an engineering	material		
	material.	1.2 Classification of ferrous metals and		
	1b. Classify ferrous metals and	alloys		
	alloys	1.3 Brief history of iron making.		
	Ic.Enlist locations of iron ore	1.4 Ores of iron.		
	mines and intergated iron and	1.5 Locations of iron ore mines and		
	steer plants of mula.	intergated iron and steel plants of		
		India.		
Unit – 11	2a. List the raw material for	2.1 Raw materials for making iron in blast		
Dow motorials for	making iron in blast furnace.	furnace.		
iron making	2b. Explain the Properties	2.2 Properties required by burden		
II OII IIIAKIIIg	required by burden	2.3 Functions and properties of coke used		
	2c. Explain functions and	in blast furnace.		
	blast furnace	2.4 Importance and types of fluxes used in		
	2d Explain types of fluxes used	1011 making.		
	in iron making process	iron ore		
	2e Describe the different	2.6 Roasting and calcining of iron ores		
	methods of processing of	2.7 Agglomeration of iron ores		
	iron ores.	2.7 Aggiomeration of from ores.		
Unit – III	3a Describe construction of	3.1 Construction of blast furnace		
	blast furnace and its	3.2 Blast furnace asecessories like stove		
Iron Making by	asecessories.	dust catcher		
Blast Furnace	3b. Describe blast furnace	3.3 Chemistry of the blast furnace.		
	chemistry.	3.4 Operation of the blast furnace.		
	3c. Describe Blast furnace	3.5 Measures taken for control of the		
	operations and explain	blast furnace irregularities.		
	chemical occurring therein.	3.6 Blast furnace refractories.		
	3d. List the the blast furnace	3.7 Modern trends in blast furnace.		
	irregularities and their	3.8 Disposal of the iron and the slag		
	remedies.	3.9 Types/grades of P.I.and their uses.		
	3e. Enumerate modern trends in			
	blast furnace			
	31. List the grades of P.I.and			
Unit IV	de List verious alternative	4.1 Needs and types for alternative		
Alternative methods	Ha. List various alternative	methods		
of iron making	4h Explain brief principles of	4.2 Principles of alternative methods of		
	alternative methods and their	iron production		
	advantages and limitations	4 3 Advantages and limitations of		
	4c. Explain sponge iron with	alternative methods of iron making		
	respect to composition,	4.4 Mini blast furnace for iron making		
	application and production.	4.5. Definition, composition and		
		application of SI, comparision of pig		
		iron and SI		
		4.6 Flow chart for production of sponge		
		Iron.		

Unit	Major Learning Outcomes	Topics and Sub-topics
Omt	(in cognitive domain)	
		4.7 Principle and production of sponge
		Iron by gas base technology
Unit – V	5a. Explain importance of	5.1 Pollution control in Iron making plant.
Environment, safety	Pollution control in Iron	5.2 Safety rules in Iron making plant.
and conservation of	making plants.	5.3 Conservation of energy at various
energy in iron	5b. Enumerate safety rules in	stages of Iron making.
making	Iron making plant	
	5c. Describe the conservation of	
	energy at various stages of	
	Iron making.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction to iron.	04	04	02	00	06
II	Raw materials for iron	08	06	02	04	12
	making					
III	Iron Making by Blast	20	12	08	10	30
	Furnace					
IV	Alternative methods of	08	06	08	04	18
	iron making					
V	Environment, safety and	02	02	02	00	04
	conservation of energy in					
	iron making					
Tot	tal Hrs	42	30	22	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL-

-----Not applicable

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will visit industries
- ii. Students in group prepare presentation and give seminar on selected topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES (

- i. Arrange industrial visit
- ii. Show video/animation films depicting different iron extraction process
- iii. Give internet based assignments to students and ask them to present in class with the help of power point presentation by group of students

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

S. No.	Title of Books	Author	Publication
1	Manufacture of iron and	G.R.Bashforth	Chapman & Hall.
	steel Vol. I, II		
2	Iron making .	R.H.Tupkary.	Khanna Publishers
3	Elements of metallurgy	Dr.D.Swarup	Rastogi Publications
4	Principles of Extractive	Tarkel Rosenqvist	TapirAcademicPress,Tro
	Metallurgy		ndheim

B. List of Major Equipment/Instrument/Materials Not applicable

C. List of Software/Learning Websites-

- i. http://www.steel.org/Making%20Steel/How%20Its%20Made/Processes/ How%20A%20Blast%20Furnace%20Works%20larry%20says%20to%2 Odelete.asp
- ii. http://www.calce.umd.edu/TSFA/iron
- iii. http://en.wikipedia.org/wiki/Steelmaking
- iv. www.nptel.com
- v. http://www.chemguide.co.uk/inorganic/extraction/iron.html
- vi. http://www.youtube.com/watch?v=6hb_iUxoP3A

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Mrs. B. H. Goyal,** I/c HOD (Met. Dept.), Dr S & S. S. Ghandhy college of Engg and Technology, Surat.
- Dr. I. B. Dave, I/c. Principal Government Polytechnic, Vyara.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. K.K Jain, Professor and Dean, Department of Mechanical Engineering
- Dr. C.K Chugh, Professor, Department of Mechanical Engineering