GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: BLOW ROTATIONAL AND THERMOFORMING PROCESS (Code: 3342301)

Diploma Programme in which this course is offered	Semester in which offered	
Plastic Engineering	4 th Semester	

1. RATIONALE

In almost every plastic plant or industry dealing with the production of hollow and thin walled plastic products, Blow moulding, Rotational moulding and Thermoforming processes have to be performed. A diploma plastic engineer has to understand and operate the machines, perform processes troubleshoot, deal with processing problems and finally produce a moulded product. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes in the students.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Plan and supervise the blow, rotational and thermoforming process.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Design various moulding process.
- ii. Select appropriate material for different moulding process.
- iii. Operate blow moulding process.
- iv. Operate rotational and thermoforming.
- v. Differentiate between blow moulding, rotational and thermoforming.
- vi. Troubleshoot processing problems in blow moulding, rotational and thermoforming.
- vii. Apply the safety rules.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching So	cheme	Total Credits	Examination Scheme					
(In Hours)		(L+T+P)	Theory Marks		Theory Marks		Practical	Marks	Total Marks
L	T	P	C	ESE	PA	ESE	PA		
3	0	4	4	70	30	40	60	200	

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

5. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
UNIT I:	(in cognitive domain) 1a. Describe basic principle	1.1 Blow Moulding Process
Blow Moulding	Blow moulding processes. 1b. List types of Blow moulding	1.1.1 Basic principle of Blow moulding
	process 1c. Compare Injection Blow moulding & Extrusion Blow moulding	1.1.2 Types of Blow moulding Process Injection Blow Moulding Extrusion Blow moulding- intermittent &
	1d. State the Advantages & disadvantages of process Applications of Blow moulding process	continuous 1.1.3 Compare Injection Blow moulding & Extrusion Blow moulding
		1.1.4 Advantages & disadvantages of process
	1 Link Di	1.1.5 Applications of Blow moulding process
	1e. List the Polymer	1.2 Materials For Blow Moulding
	selection criteria 1f. State the various types of	1.2.1 Polymer selection criteria1.2.2 Various types of materials
	materials 1g. Various types of materials for blow moulding	
	1h. Explain various parts of Blow	1.3 Blow Moulding Machine
	moulding machine.	1.3.1 Extruder & its
	1i. Describe the Extruder & its	requirements
	requirements	1.3.2 Die head & parison die
		1.3.3 Die orifice and mandrel design
	1j. List the Parison blowing	1.4 Parison
	systems	1.4.1 Parison formation
	1k. Describe the calibration steps of	1.4.2 Parison blowing systems
	Mandrel inflation-Top mandrel,	1.4.3 Needle inflation
	Bottom mandrel systems	1.4.4 Mandrel inflation-Top
	11. Explain parison blowing	mandrel, Bottom mandrel,
	systems. 1m. Describe the Control of parison	Top mandrel with calibration 1.4.5 Parison programming and
	wall thickness by programming	Parison wall thickness control
	1n. Describe the various process	1.5 Processing Parameters
	parameters for Blow moulding	1.5.1 Various Blow moulding
	process	processing parameters
	10. List the effects of process variables such as raw material, parison die, air entrance, mould cooling & parison wall thickness control	1.5.2 Effects of process variables such as raw material, parison die, air entrance, mould cooling & parison wall thickness control 1.5.3 Post molding operations
	1p. Describe Post moulding operations	1.5.4 Trouble shooting

	1q. List the fault in Blow Moulding			
	1r. Describe the Solutions fpr Blow			
	Moulding processing problems			
UNIT II:	2a. Describe Rotational moulding	2.1 Rotational Moulding Process		
Rotational	process.	2.1.1 Process steps		
Moulding	2b. State theAdvantages and	2.1.2 Advantages and disadvantages		
8	disadvantages of Rotational	of Rotational moulding		
	moulding	2.1.3 Applications of Rotational		
	2c. List the Applications of	Moulding		
	Rotational moulding			
	2d. List Types of moulding	2.2 Materials		
	materials	2.2.1 Moulding material		
	2e. Describe Moulding material	requirements		
	requirements	2.2.2 Types of moulding materials		
	2f. Select the appropriate material			
	for Rotational moulding			
	2g. Identify various parts of	2.3 Rotational Moulding Machine		
	Rotational moulding	2.3.1 Rock and roll machine		
	machine	2.3.2 Clamshell		
		2.3.3 Vertical machine		
		2.3.4 Shuttle machine		
		2.3.5 Fixed arm Carousel type machine		
		2.3.6 Independent arm type machine		
		2.3.7 Oil jacketed machine		
		2.3.8 Electrically heated machine		
	2h. Describe the steps of Design of	2.4 Rotational Moulds		
	various Rotational moulds	2.4.1 Rotational molds design		
	2i. List the Mould materials	2.4.2 Mould materials		
	2j. State the importance of	2.4.3 Heating & cooling of mould		
	Heating & cooling of mould			
	2k. Set processing parameters	2.5 Part Design		
	21. Solve processing problems in	2.6 Process Variables		
	Rotational moulding	2.7 Trouble Shooting		
	2m. Differentiate the blow moulding and rotational moulding	2.8 Comparison With Blow Moulding		
UNIT III	3a Classify the	3.1 Thermoforming Process		
Thermo	Thermoforming processes.	3.1.2 Various stages of		
Forming	3b Describe the Various	thermoforming process		
101111119	stages of thermoforming	3.1.3 Explain various methods of		
	process	forming		
	3c Explain various methods	3.1.4 Vacuum Forming		
	of forming	3.1.5 Pressure forming		
	3c.1 Vacuum Forming	3.1.6 Advantages and disadvantages		
	3c.2 Pressure forming	of thermoforming		
	3d State the Advantages and	3.1.7 Applications of thermoforming		
	disadvantages of	Process		
	thermoforming			
	3e List the applications of			
	thermoforming process			

3f	Select the appropriate	3.2 Materials	
	material for	3.2.1	Material requirements
	Thermoforming	3.2.2	Types of material
3g	List the types of	3.3 Thermofo	rming Machines
	thermoforming machines	3.3.1	Single-stage sheet fed
	3g.1 Describe various		machine
	Thermoforming	3.3.2	Multiple stage sheet fed
	machines		machine
			In-line sheet fed machine
		3.3.4	Continuous roll fed
		225	machine
		3.3.5	
3h	Explain processing	-	g Requirements
	requirements for		Heating methods
	thermoforming		Temperature control
		3.4.3	Vacuum/air pressure
		3.4.4	Cooling
		3.4.5	Trimming
3i	Set various process	3.5 Process V	ariables
	parameters for Thermoforming	3.6 Trouble S	hooting
	process	3.7 Compariso	on With Blow And
3j	Solve processing problems in	Rotational	l Molding
	Thermoforming		
3k	Differentiate the blow,		
	rotational and thermoforming		
	process.		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching Hours	R Level	U Level	A Level	Total Marks
I	Blow Moulding	18	18	10	07	35
II	Rotational Moulding	14	08	06	06	20
III	Thermoforming	10	07	04	04	15
	Total Hrs	42	33	20	17	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Notes:

This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercises	
	Number	(Outcomes' in Psychomotor Domain)	
			Reqd.
1	I	Demonstrate the constructional details of a blow moulding machine.	02
2	Ι	Determine cycle time for a given product for blow moulding process.	04
3	I	Set process parameters on a blow moulding machine.	04
4	I	Control wall thickness of parison by parison programming system.	04
5	I	Identify problem associate with Blow moulding process.	04
6	II	Demonstrate the constructional details of a rotational moulding machine.	02
7	II	Determine cycle time for a given product for rotational moulding process.	
8	II	Set process parameters on a rotational moulding machine.	04
9	II	Identify various problems during Rotational moulding process.	
10	II	Prepare comparison chart for blow moulded and rotational moulded products.	
11	III	Demonstrate the constructional details of a Thermoforming machine.	02
12	III	Determine cycle time for a given product for Thermoforming process.	
13	III	Set process parameters on a Thermoforming machine.	
14	III	Identify various problems during Thermoforming process.	
15	I	Plan preventive maintenance schedule for blow moulding machine	
16	II	Plan preventive maintenance schedule for rotational moulding machine	04
		TOTAL	56

Notes:

- a. It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Term work report content of each experience should also include following.
 - i. Experience description / data and objectives.
 - ii. Drawing of experience / setup with labels/nomenclature to carry out the experience.
 - iii. The specifications of machines / equipments / devices / tools /instruments /items/elements which is / are used to carry out and to check experience.
 - iv. Process parameters / setup settings' values applied to carry out experience.
 - v. Steps / Process description to execute experience.

- d. Mini project and presentation topic/area has to be assigned to the student in the beginning of the term by batch teacher. This may be assigned individually or in the group of maximum 2 to 3 students.
- e. For ESE, students are to be assessed for competencies achieved.

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Students will collect Blow moulded, Rotational moulded and Thermoformed products like bottle, jar, jerry can disposable dish etc. and would comment on their quality.
- ii. Students will collect information related to the experiment through internet.
- iii. Students will visit nearby industry having blow, rotational and thermoforming operations.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Visit to nearby plastic industries engaged in Blow, Rotational and Thermoforming.
- ii. Video/Animation films on working of different type of Blow, Rotational and Thermoforming process may be shown.
- iii. Mini project may be given to students on different defects in the various Blow, Rotational and Thermoforming products, reasons for these defects and possible remedies.

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr no.	Title of Books	Author	Publication
1.	Blow Moulding of Plastics	E. G. Fisher	The Plastics Institute
2.	Blow Moulding Handbook	Rosato & Rosato	Hanser Publishers
3.	Plastic Blow Moulding Handbook	Norman Lee	Van Nostrand Reinhold
			Company
4.	Rotational Moulding	Glenn Beall	Hanser verlag
5.	Rotational Moulding of Plastics	R.J.Crawford	Plastics Design Library
			William Andrew Publishing
6.	Moulding of Plastics	Norbert Bikales	Wiley Interscience
7.	Handbook of Plastic Technology	Allen & Baker	CBS Publishers & Distributors
8.	Plastic Materials and Processes	S.S.Schwartz &	Van Nostrand Reinhold
		S.H.Goodman	Company
9.	Plastic Engineering Handbook	J.L.Frados	Van Nostrand Reinhold
			Company
10.	SPI Plastic Engineering Handbook	M Berins	Springer
11.	Technology of Thermoforming	J.L.Throne	Hanser Publishers
12.	Thermoforming- A Plastics	G.Gruenwald	Technomic Publishing AG
	Processing Guide		

B. List of equipments:

- i. Blow moulding machine with parison programming system
- ii. Rotational moulding machine
- iii. Thermoforming machine with heating system for sheet
- iv. Scrap grinder

Course Code :3342301

- v. Weighing scale
- vi. Stop watch

C. List of Software/Learning Websites:

- i. http://www.bpf.co.uk/
- ii. http://www.youtube.com
- iii. http://www.technologystudent.com/
- iv. http://www.notesandsketches.co.uk/Index.html
- v. http://www.paulsontraining.com
- vi. http://www.traininteractive.com
- vii. http://www.tecni-form.com/moulding-animation.php
- viii. http://www.rotomolding.net/rotomolding_demo.html
- ix. http://en.wikipedia.org/wiki/Rotational_molding
- x. http://rotomolding.blogspot.in/2007/09/great-rotational-molding-animation.html
- xi. http://people.bath.ac.uk/en3hl/blow.html
- xii. http://www.kenplas.com/project/pet/petblow.aspx
- xiii. http://www.4spe.org/online-store/ten-fundamentals-thermoforming-videodvd-program

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- **Prof. B. I. Oza**, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- **Prof. N. C. Suvagya**, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Abhilash Thakur.** Associate Professor, Department of Applied Sciences
- **Dr. Bashirullah Shaikh**, Assistant Professor, Department of Applied Sciences