GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN FOR INJECTION MOULD

(Code: 3342302)

Diploma Programme in which this course is offered	Semester in which offered
Plastic Engineering	4 th Semester

1. RATIONALE

A Plastic diploma engineer has to plan and supervise operations and maintenance of injection moulds. This competency requires the knowledge of different kinds of Injection Moulds. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCIES

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competencies:

- Design and draw machine Injection mould for a given product.
- Develop 2D and 3D mould drawings using AUTOCAD software.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire require learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Draw different views of injection mould.
- ii. Design the ejection system and cooling system for the given mould.
- iii. Estimate the movement of split in the mould.
- iv. Design mould on CAD software.
- v. Animate the design.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total		Exan	nination Scheme				
100	(In Hours	s)	Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200	
3	0	4	7	70	30	40	60	200	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes(in	Topics and Sub-topics		
	cognitive domain)			
Unit – I	1a. Describe the selection	1.1 Introduction of Injection Mould		
	requirement for mould	1.2 Mould Material Selection Requirements :		
Injection Mold	materials.	1.2.1 Product Design Requirements		
Materials	1h List the types of Mould	1.2.2 Mould Design Requirements		
	ID. List the types of Mould Materials	1.2.3 Mould Making Requirements		
	Waterials	1.2.4 Moulding Requirements		
		1.3 Types of Mould Materials		
Unit- II	2a Explain various design	2.1 Injection Machine Requirements for fitment		
	considerations for injection	of mould		
General Mould	mold	2.2 Number of impressions		
Design	2b Describe the Mould	2.3 Shrinkage Calculation - Linear and		
Considerations	Assembling Procedure	Volumetric Shrinkage		
	2c State the Mould Designer's	2.4 Venting Methods		
	Check List	2.5 Taper Location Recess in Core & Cavity		
	2d Describe the Mould	Plate		
	Maintenance procedure	2.6 Limits, Fits & Tolerances For Mould Parts		
	2e Estimate the Mould Cost	2.7 Mould Cost Estimation		
	Estimation	2.8 Mould Assembling Procedure		
		2.9 Mould Designer's Check List		
		2.10 Mould Maintenance		
Unit – III	3a.Differentiate the two-plate and	3.1 Two-Plate Mould:		
	three plate injection mould.	3.1.1 Introduction of Two Plate Injection		
Two Plate and	3b.Draw two-plate and three plate	Mould		
Three Plate	mould.	3.1.2 Constructional Details of Two Plate		
Injection	3c. Describe the construction of	Mould		
Moulds	Two Plate Mould	3.2 Three-Plate Mould:		
		3.2.1 Introduction		
		3.2.2 Construction and Working : Stripper		
		Plate Mould, Double Daylight		
		Underfeed Mould, Double Daylight		
		Underfeed-Stripper Plate Mould		
		3.2.5 Opening Control Devices		
		3.2.4 Runner Ejection Techniques		
	4. Explain constructional details	5.2.5 Comparison with Two Plate Mould		
Omt - 1V	4a. Explain constructional details	4.1 Significance of Split Mould Design		
Split Moylda	for spin mould.	4.2 Shung Spins & Guiding Plate Designs		
Shir monus	4b.Draw the split mould.	4.3 1 Split Actuation Matheda		
		4.3.1 Spin Actuation Methods		
		4.3.2 Split Locking Wethous 1.3.3 Split Safaty Arrangements		
Unit V	5a. Classify the specialized	4.5.5 Spin Salety Allangements		
	injection moulds	5.1 Introduction		
Specialized	injection mounds.	5.1.2 Methods for Internally Threaded		
Specialized		J.1.2 Wethous for internally filleaded		

Unit	Major Learning Outcomes(in cognitive domain)	Topics a	nd Sub-topics	
Moulds		(Components: Fixed Threaded Core	
		Ι	Design, Stripping Method, Loose	
		Threaded Core and Unscrewing Method.		
		5.1.3 M	lethods for Externally Threaded	
		(Components: Fixed Threaded Cavity	
		I	Design, Automatic Unscrewing,	
		Stripping Method and Threaded Splits.		
		5.2 Hot Runner Moulds		
		5.2.1 Introduction		
		5.2.2	Internally Heated Hot Runner	
			Systems	
		5.2.3	Externally Heated Hot Runner	
			Systems	
		5.2.4	Insulated Hot Runner Molding	
			System	
		5.2.5	Advantages and Disadvantages	
		5.3 Intro	duction of Stack Moulds	
		5.4 Introduction of Interchangeable Insert		
		Moulds		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total Marks
Ι	Injection Mold Materials	4	4	4	0	8
II	General Mould Design Considerations	8	4	5	4	13
III	Two Plate and Three Plate Injection Moulds	14	7	8	8	23
IV	Split Moulds	8	4	5	4	13
V	Specialized Moulds	8	4	5	4	13
	Total	42	23	27	20	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No. Unit Practical/Exercises Number (Outcomes' in Psychomotor Domain)		Approx Hours Reqd.	
1	III	Design sectional elevation, plan and inverted plan of Two Plate and Three Plate machine mould.	16
2	III	Draw detail drawing of mold drawn in sheet 1.	12
3	III	Design the sectional elevation, plan and inverted plan of Split Mold.	12
4	III	2D and 3D drawing of hand injection/machine injection mold using AUTOCAD.	16
TOTAL	·		56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students will collect different shaped injection molded articles and analyze the type of mould suitable for that product.
- ii. Students will collect information related to mould through internet.
- iii. Students will visit nearby mould making industry.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

- i. Show video/animation films and photographs depicting process of producing different plastic objects using different types of injection moulding machines.
- ii. Arrange visit to nearby injection moulding industry and discuss the various defects in moulded objects and remedial measures for the same.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

SR.	TITLE OF BOOK	AUTHORS	PUBLICATION
NO.			
1	Injection Mould Design	R.G.W. Pye	Longman Scientific & Technical
2	The Complete Part Design Handbook	Alfredo Campo	Hanser Gardner Publications (2006)
3	Plastics Mold Manufacturing Handbook	Dubois & Pribble	Van Nostrand Reinhold
4	Plastics : Product Design and Process	Harold Belofsky	Hanser-Gardner Publications
	Engineering		
5	Injection Mould Design Fundamentals	Denton & Glenvill	Industrial Press
6	Injection Moulding	Irvin I. Rubin	Wiley
7	Plastic Materials & Processes	S.S.Schwartz &	VanNostrand Reinhold
		S.H.Goodman	
8	Plastic Engineering Handbook	M Berins	Van Nostrand
9	Injection Moulding Handbook	Rosato & Rosato	Kluwer Academic Publishers
10	Workshop Technology	Khurmi & Gupta	S. Chand Limited

B. List of Major Equipment/Instruments

Injection Moulding Machine (Educational/training Model)

C. List of Software/Learning Websites:

- i. AutoCAD
- ii. http://www.ferris.edu/htmls/academics/course.offerings/hillm/myweb7/Basic%20Molds/ Basic%20Molds.htm
- iii. http://en.wikipedia.org/wiki/Injection_molding

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- **Prof. J. R. Desai**, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- **Prof. B. I. Oza**, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences