GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS INSTRUMENTATION AND MAINTENANCE (PIM) (Code: 3342305)

Diploma Programmes in which this course is offered	Semester in which offered		
Plastics Engineering	4 th Semester		

1. RATIONALE

Plastic engineering machineries and processes are now very much automated. And hence, the knowledge of instruments is essential for a plastic engineer. This subject provides the knowledge of measurement and control of plastic processing parameters. Moreover, the subject also deals with maintenance methods for machinery and helps plastic diploma holders in appreciating safety rules and do the routine maintenance. Hence this course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Troubleshoot and maintain different plant machineries and various instruments safely

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Operate various measuring and controlling instruments
- ii. Explain the fundamentals of servomechanism and PLC systems
- iii. Perform plant maintenance and break- down maintenance.
- iv. Apply preventive maintenance schedule
- v. Maintain lubricating mechanisms for prevention of wear, corrosion.
- vi. Organize safety equipments/aids that are to be used during plastic processing.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total			Examination Scheme					
(In Hour	s)	Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. DETAILED COURSE CONTENT

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(in cognitive domain)			
Unit – I	1a. Select appropriate measuring	1.1 Introduction to instrumentation		
Instrumentation	instrument	1.2 Selection of measuring instruments		
fundamentals	1b. Rectify the instrumental errors.	1.3 Errors in instruments		
	1c. Draw the diagram of instrument	1.4 Block diagram of instrumentation		
	system	system		
UNIT- II	2a. Differentiate between	2.1 Temperature measurement and scales		
Process	measuring instruments.	2.2 Thermocouple & resistance		
Instrumentation	2b. Utilize various measuring	thermometer		
	instruments.	2.3 Pressure measurement instruments		
	2c. Calibrate various instruments.	2.4 Transducers		
	2d. Use the transducers			
UNIT- III	3a. Differentiate open and close	3.1 Open & close loop control system		
Servo	loop controls systems	3.2 Regulators & servo-mechanism		
mechanisms &	3b. Apply servomoters	3.3 Servomotors		
PLC system	3c. Describe the working of PLC	3.4 PLC control system		
	systems			
UNIT- IV	4a. Classify various maintenances	4.1 Types of maintenance		
Plant	4b. Prevent equipments from	4.2 Fault finding methods		
maintenance	beak down	4.3 Planning & Scheduling of		
	4c. Manage maintenance	maintenance work		
	schedules	4.4 Maintenance cost and economy		
	4d. Repair the machine	4.5 Service life of equipments		
UNIT - V Ween	5a. Apply various techniques to	5.1 Wear types and reduction techniques		
Vear,	reduce wear	5.2 Corrosion and its types		
Lubrication	5b. Select appropriate preventive	5.3 Corrosion prevention techniques		
	material for corrosion	5.4 Function and types of Lubricants		
	Jubricente	5.5 Lubrication methods		
	5d Apply the lubrication			
	methods			
UNIT-VI	6a Organize maintenance	6.1 Maintenance of an Extruder		
Maintenance of	activities for any plastic	6.2 Maintenance of an Injection		
Plastics	processing plant	Moulding machine		
processing	6b. Prepare maintenance chart.	6.3 Maintenance of Moulds & dies		
machines	6c. Identify the faults.	6.4 Maintenance of cooling / chilling		
		plants		
		6.5 Maintenance of Hydraulic &		
		pneumatic systems		
UNIT-VII:	7a. Appreciate the need of safety	7.1 Importance of safety		
Safety	7b. Apply safely rules	7.2 Major safety measures in plastics		
	7c. Organize various safety	processing plants		
	awareness programmes	7.3 Management responsibilities		
	7d. Prevent accidents	7.4 Accidents and its prevention		
	7e. Use various protective	7.5 Activities related to promotion of		
	equipments	safety		
		7.6 Safety awareness measures		
		7.7 Personal Protection Equipments		

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Instrumentation fundamentals	04	02	03	00	05
II	Process Instrumentation	08	05	05	05	15
III	Servo mechanisms & PLC system	06	05	05	00	10
IV	Plant maintenance	06	02	02	06	10
V	Wear, Corrosion & Lubrication	06	05	03	02	10
VI	Maintenance of Plastics processing	06	03	02	05	10
	machines	00	05	02	05	10
VII	Safety	06	03	03	04	10
	Total	42	19	23	22	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICAL/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical /Exercises (Outcomes in Psychomotor Domain)	Approx Hours. required	
1	II	Demonstrate working principle and constructional features of Bi-	02	
		metallic thermometer		
2	II	Calibrate a given thermocouple.	02	
3	II	Calibrate a RTD.		
4	III	Carryout plant maintenance of Moulds & dies	04	
5	III	Carryout plant maintenance of Hydraulic & pneumatic systems	02	
6	IV	Prepare list of activities of preventive maintenance.	02	
7	IV	Perform preventive maintenance of Injection molding machine	02	
8	IV	Find and resolve the problems in any plastic processing machine	02	
9	9 IV Apply lubrication to IMM, extruder		02	
10	VI	Carryout plant maintenance of extrusion plant.		
11	VI	Carryout plant maintenance of Injection molding machine	04	
Total				

GTU/ NITTTR Bhopal/13-14

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as: i.measurement of pressure and temperature

- ii.calibrate instruments
- iii.greasing machines
- iv.Removing rust from machines, molds, dies.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If any)

- i. Show video/animation films depicting the working principle and their constructional features of different process instrumentations being used in plastic industry.
- ii. Arrange a visit to nearby plastic industry and show them different preventive and breakdown maintenance activities being carried out.

10. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication	
1.	Industrial Instrumentation &	S.K.Singh	Tata McGraw Hill Publications	
2.	Industrial Instrumentation	Donald P.Eckman	Wiley Eastern Ltd	
3.	Hand Book of Instrumentation and control	H.P.Kallen	McGraw Hill Company Ltd.	
4.	Maintenance Engineering Hand Book	Higgins & Morrow	McGrow Hill	
5.	Plastics Industry Safety Hand Book	Dominick V.Rosato & John R. Lawrence	Cahners Books,Boston	
6.	Industrial safety, Health and Environment Management system	R. K. Jain & Sunil S. Rao	Khanna Publishers	
7.	Electrical Safety, Fire Safety Engineering and Safety management	S. Rao & Prof. H.L. Saluja	Khanna Publishers	

A. List of Books

B. List of Major Equipment/ Instrument with Broad Specifications

i.Thermocouple ii.RTD

C. List of Software/Learning Websites

i.http://lorien.ncl.ac.uk/ming/dept/Swot/connotes.htm

ii.http://nirmauni.ac.in/process-instrumentation-and-control---1ecd03/course-contents/lecturenotes

- iii. www.processinst.com
- iv.http://www.automation.siemens.com/mcms/automation/en/sensor-systems/processinstrumentation/Pages/Default.aspx
- v.www.scribd.com/doc/62796183/Instrumentation-Presentation
- vi.http://pc-education.mcmaster.ca/Instrumentation/go_inst.htm

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. A. S. Amin, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. J. R. Desai, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. M. K. Thakarar, Lecturer in Plastic Engineering, Govt. polytechnic, Valsad
- Prof. B. I. Oza, Lecturer in Plastic Engineering, Govt. polytechnic, Ahmedabad
- Prof. N. C. Suvagya, Lecturer in Plastic Engineering, G.P., Chhotaudepur

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences