GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ELECTRICAL NETWORK AND CIRCUITS (Code: 3342403)

Diploma Programme in which this course is offered	Semester in which offered		
Power Electronics	4 th Semester		

1. RATIONALE

This course is intended to enable the student understand the facts, concepts and principles of the electrical engineering network and circuits and methods to analyse them, which will enable him/her in designing, operating and maintaining electric circuits. This course is therefore a key course for every power electronics engineer.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Design, operate and maintain DC and AC Networks using network theorems.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyse circuits using Kirchhoff's laws
- ii. Interpret the response of different RLC circuits to AC supply.
- iii. Analyse networks circuits using mesh, node and source transformation.
- iv. Solve networks and mutually coupled circuits using network theorems.
- v. Analyse two port network

4. TEACHING AND EXAMINATION SCHEME

Tea	ching So	cheme	Total Credits	Examination Scheme																	
(In Hours)		(L+T+P)	Theory Marks		Theory Marks		Theory Marks		Theory Marks		Theory Marks		Theory Marks		Theory Marks		Theory Marks		Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA														
4	1	2	7	70	30	20	30	150													

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Umt	(in cognitive domain)	
UNIT – I	1a. Differentiate between, electric	1.1. Electric circuit terminology: Electric
	Current, Potential Difference,	Current, Potential Difference,
Basic Circuits	Electric Power and Energy	Electric power and Energy
Elements And	1b. Calculate voltage and current	1.2. Voltage Drop and Current through:
Energy Sources	in R, L and C circuits	Resister, Capacitor and Inductor
	1c. Calculate equivalent source	1.3. Sources of electrical energy:
	from series and parallel	dependant and independent; Series
	connected energy sources	and parallel connected sources,
		Source transformation
	1d. Solve various electrical	1.4. Unm S Law
	Law Kirchhoff's laws	1.5. Kirchnoff Staws: Kirchnoff Scurrent
	Divider Pules etc	1.6 Divider Pules
	1. Transform Delta Wye and	1.0. Divider Kules
	Wve = Delta connections	1.7. Dena-wye mansionnation
	Wye Defu connections	
UNIT – II	2a. Calculate average value, RMS	2.1. Alternating Current: average value,
	value and form factor of AC	RMS value and form factor.
Alternating	circuits	
Current Circuits	2b. Interpret the response of R, L,	2.2. A.C. Voltage applied to: resister,
	C; RL, RC and RLC series	inductor, capacitor, RL, RC and RLC
	circuits to AC supply.	series circuits.
	2c. Explain series and parallel	2.3. Series and parallel resonance, Quality
	resonance with its quality	factor, Bandwidth
	factor and bandwidth.	
	2d. Solve problems to Convert AC	2.4. Alternating current and Voltages:
	voltage and current to polar,	Polar form, Rectangular form and
	rectangular and vector form.	vector representation.
UNIT – III	3a. Analyse networks using	3.1. Mesh analysis. Nodal analysis
	mesh and nodal analysis	3.2. Source Transformation
Network	3b. Apply source transformation	
Analysis	in relevant applications	
UNIT – IV	4a. State the salient features of	4.1. Network Theorems: Thevenin's,
	the various network theorems	Norton's, Superposition, Maximum
Network	4b. Apply various network	power transfer, Millman's, Reciprocity
Theorems And	theorems to analyse various	Tellegen's and Compensation
Coupled Circuits	types of DC circuits	Theorems.
	As Describe the features of	4.2 Mutually accurated sinewite series and
	4c. Describe the features of	4.2. Mutually coupled circuits- series and
	parallal circuits	coupled equivalent circuits
	5a Explain the working of	4 3 Dot convention
	conductively coupled	
	equivalent circuits	
	4d. State the need for dot	
	convention	
UNIT – V	5a. Explain the need for two port	5.1. Network parameter: two port;
	network	Relationship between parameters

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Two Port Network	5b. Explain the relationship between network parameters	
	5c. Describe series and cascade interconnection of two port network.	5.2. Interconnection: series, cascade

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			/Iarks
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Basic circuits elements and energy	12	3	7	5	15
	sources					
II	Alternating Current Circuits	9	2	6	3	11
III	Network Analysis Techniques	10	0	4	8	12
IV	Network Theorems and Coupled Circuits	18	8	7	8	23
V	Two port network	7	0	5	4	9
Total Hrs		56	13	29	28	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs. Required
1.	Ι	Use C.R.O. to analyse waveforms.	4
2.	Ι	Use Kirchhoff's Current Law in electric/electronic circuits	2
3.	Ι	Use Kirchhoff's Voltage Law in electric/electronic circuits	2
4.	Ι	Use Current divider rule in circuits	2
5.	Ι	Use Voltage divider rule in circuits	2

GTU/NITTTR/Bhopal/13-14

a	TT A .		
S .	Unit	Practical/Exercise	Approx.
No.	No.	(Outcomes' in Psychomotor Domain)	Hrs.
			Required
6.	Ι	Use line and phase values of voltage and current in star	2
		connected balanced load situation.	
7.	Ι	Use line and phase values of voltage and Current in delta	2
		connected balanced load situation.	
8.	II	Obtain the phasor diagram of R-L, R-C, R-L-C series	4
		circuit.	
9.	III	Analyse circuits using Nodal analysis. 4	
10.	III	Analyse circuits using Mesh analysis. 4	
11.	III	Analyse circuits using Source Transformation.2	
12.	IV	Use superposition theorem to analyse D. C. circuit. 2	
13.	IV	Use Thevenin's theorem to analyse D. C. circuit 2	
14.	IV	Use Norton's theorem to analyse D. C. circuit	2
15.	IV	Use maximum power transfer Theorem to analyse D.C.	2
		circuit.	
16.	IV	Analyse Series and Parallel connection of Mutually coupled	2
		circuit.	
17.	V	Determine relation between two-port parameters.	2
Total	Hrs (perf	form practical worth 28 hours so that most units are covered)	42

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare process chart of Mess and Nodal analysis.
- ii. Prepare process chart of different Network Theorems for DC circuits.
- iii. Prepare working model of star-delta conversion and vice-versa.

9. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

Give numerical problems to students for solving during tutorial classes, and help them whenever they need it.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Books	Author	Publication
1	Electrical Networks and Circuits	Manke B.S.	Khanna publishers, New Delhi, latest edition
2	Electrical Circuit analysis	P.Ramesh babu	Scitech, New Delhi, latest edition

B) List of Major Equipment/Materials with Broad Specifications

- i. Variable transformer.(0-230 volt, 6 amp)
- ii. Three phase transformer. (100 kva, 410 v)
- iii. Single phase transformer.(primary-120/240, secondary-120,140,160)
- iv. Rheostat(various)
- v. DSO

- vi. Variable D.C. Power supply.(0-30v)
- vii. RLC DC Circuit trainer board.
- viii. Multimeter.

C) List of Software/Learning Websites

- i. http://www.electrical4u.com/
 - ii. https://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/Elec trical_Circuits/Electrical_Circuits.html
- iii. http://electricalengineeringforbeginners.blogspot.in/2011/06/network analysis-for-electric-circuits.html
- iv. www.youtube.com
- v. www.nptel.iitm.ac.in
- vi. http://en.wikipedia.org/wiki/Network_analysis_%28electrical_circuits %29

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S. L. Dhoriyani**, LPE, Dept. of Power Electronics, Dr. S. and S. S. Ghandhy College of Engg. and Technology, Surat.
- **Prof (Smt.) J. M. Patel**, ALPE, Dept. of Power Electronics, Dr. S. and S. S. Ghandhy College of Engg. and Technology, Surat.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. A. S. Walkey,** Associate Professor, Department of Electrical and Electronics Engineering
- **Prof. Joshua Earnest,** Professor, Department of Electrical and Electronics Engineering