GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MEASURING INSTRUMENTS AND TRANSDUCERS (Code: 3342404)

Diploma Programme in which this course is offered	Semester in which offered	
Power Electronics Engineering	4 th Semester	

1. RATIONALE

With the advancement of technology measurement techniques have taken rapid strides with the introduction of different types of instrumentation devices. This course is intended to enable the student to understand the facts, concepts, principles and applications of the measuring instruments and transducers and will be able to apply the same in almost all areas of power electronics required to use, calibrate and maintain different types of electrical and electronic instrumentation systems and transducers used in the industry. More drill and practice in the lab would prove more useful to develop the skills.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Measure different electric parameters preciously.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Use AC and DC bridges for specific applications.
- ii. Measure various electrical parameters using relevant instruments.
- iii. Measure various electrical quantities using CRO and DSO.
- iv. Select the relevant transducers for specific applications.
- v. Use signal generators for specific application.

4. TEACHING AND EXAMINATION SCHEME

Tea	ching So	cheme	Total Credits	Examination Scheme				
(In Hours)		(L+T+P)	Theory Marks		Practical	Marks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	РА	
4	1	2	7	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics	
Umt	(in cognitive domain)		
Unit – I	1a. Describe requirement of measurement.	1.1. Measurement: definition,	
	1b. State the tolerance limits for accuracy,	requirement, advantages	
Measureme	precision, sensitivity and resolution.	1.2. Define: Accuracy, Precision,	
nt and	1c. Discriminate Accuracy and Precision	Sensitivity and Resolution.	
Measureme	1d. Differentiate various errors in	1.3. Errors: gross error, systematic	
nt of	measurement.	error, random error	
Circuit	1e. Explain principle of bridge balancing	1.4. General equation for bridge balance	
Parameters	and its need.		
	1f. Describe the working of Kelvin's	1.5. DC bridges: Kelvin's double	
	double bridge and Wheatstone bridge.	bridge, Wheatstone bridge	
	1g. Solve problems using DC bridges.		
	1h. Describe the working of Maxwell	1.6. AC bridges: Maxwell Bridge,	
	Bridge, Anderson Bridge, Hays	Anderson Bridge, Hays Bridge, De	
	Bridge, De Sauty's Bridge and Wien	Sauty's Bridge, Wien Bridge	
	Bridge.		
	1i. Solve problems using AC bridges.		
Unit – II	2a. Describe the working of PMMC and	2.1. PMMC instrument, Moving iron	
	moving iron type instruments.	type instruments	
Electrical	2b. State the criteria for the choice of		
And	PMMC and Moving iron type		
Electronic	instruments.		
Measuring	2c. State the function of different types of	2.2. Voltmeter, Ammeter, Wattmeter,	
Instruments	meters.	Energy meter, Frequency meter,	
	2d. Use the different meters in various	phase sequence meter, power factor	
	circuits.	meter.	
	2e. Describe the construction of Amplified	2.3. Amplified DC voltmeter, AC	
	DC voltmeter, AC voltmeter using half	voltmeter using half wave rectifier,	
	wave rectifier and analog electronic voltmeter.	Analog electronic voltmeter.	
		2.4. DVM: Ramp type, Integrating type,	
	2f. Describe the construction of Ramp type and Integrating type DVM	2.4. D v Wi. Kamp type, integrating type,	
	type and integrating type DV M		
Unit – III	3a. Explain the working of CRO using	3.1. Cathode Ray Oscilloscope (CRO):	
	block diagram.	Block diagram, Construction.	
CRO And	3b. Explain screens, Graticule and Time	3.2. Measurement: voltage, current,	
DSO	base generators used in CRO	phase and frequency (Lissajous	
	3c. Describe the measurement of voltage,	Patterns)	
	current, phase and frequency using	3.3. Digital Storage Oscilloscope	
	CRO.	(DSO): Construction	
	3d. Compare the construction of CRO and	3.4. Direct probe: Isolation probe,	
	DSO with block diagram	Detector probe	
	3e. State the function of different types of	_	
	probes and their applications.		
Unit – IV	4a. State the need of transducers.	4.1. Transducers: requirements	
	4b. Classify transducers.	4.2. Classification: Active and Passive,	
Transducers		Analog and Digital, Electrical and	
		non electrical, Primary and	
		Secondary, Transducer and Inverse	
		Transducer	

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	 4c. Describe working principle of Resistive, Inductive, Capacitive, LVDT, Piezoelectric, Strain Gauge, Thermocouple, RTD, Thermister. 4d. Select the relevant transducers for specific applications. 4e. State the need of signal conditioning. 	 4.3. Transducers: Resistive, Inductive, Capacitive, LVDT, Piezoelectric, Strain Gauge, Thermocouple, RTD, Thermister. 4.4. Signal conditioning requirement
Unit – V Signal Generators	 5a. State the need for signal generator. 5b. Differentiate between pulse wave and square wave generators with their applications. 5c. State the uses of function generator. 	5.1. Pulse wave and Square wave generator5.2. Function generator

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R Level	U Level	A Level	Total Marks
Ι	Measurement and Measurement of Circuit Parameters	14	8	6	4	18
II	Electrical and electronic Measuring Instruments	12	4	4	4	12
III	Oscilloscope	10	4	6	2	12
IV	Transducers	16	5	7	8	20
V	Signal generators	4	2	3	3	8
	Total	56	23	26	21	70

Legends: R = Remember; U = Understand; A = Application and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF PRACTICALS/EXERCISES

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise	Apprx. Hrs.
No.	No.	(Outcomes' in Psychomotor Domain)	Required
1.	. I Build/Test Wheatstone bridge.		2
2.	Ι	Build/Test Kelvin double bridge.	2
3.	Ι	Build/Test Maxwell Bridge.	2
4.	Ι	Build/Test Anderson Bridge.	2
5.	Ι	Build/Test Hays Bridge.	2
6.	Ι	Build/Test De Sauty's Bridge.	2
7.	Ι	Build/Test Wein Bridge.	2
8.	II	Use DC ammeter and voltmeter for different ranges	2
9.	II	Measure different electrical parameters using DVM	2
10	II	Measure different electrical parameters using DFM	2
11.	III	Measure different voltage using CRO	2
12.	III	Measure phase:(Lissajous Patterns)using CRO	2
13.	III	Measure frequency :(Lissajous Patterns) using CRO	2
14.	III	Measure different voltage using DSO	
15	IV		
16	IV	Use strain gauge for different applications.	2
17.	IV	Use Inductive transducer for different applications.	2
18	IV	Use Capacitive transducer for different applications.	2
19	IV	Use Piezoelectric transducer for different applications.	2
20.			2
		applications.	
21.	V	Build/test square wave and pulse wave generator.	2
22.	V	Test different parameters using Function Generator.	2
To	tal Hrs(p	erform practical worth 28 hours so that most units are covered)	44

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare chart for understanding various electro-mechanical instruments
- ii. Prepare presentation one any one instrument for Seminar
- iii. Survey the market and collect the specifications of the latest measuring instruments available in market

9. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

Give numerical problems to students for solving during tutorial classes, and be around them to help them if they get stuck at some stage of the problem.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Books	Author	Publication
1	Electronic Instrumentation	Kalsi, H.S.	Tata McGraw Hill, New Delhi,
1	Electronic instrumentation		Latest edition
	Modern Electronic	Helfrick, Albert D.,	PHI Learning, New Delhi, latest
2	Instrumentation and	Cooper, William D.	publication
	Measurement Techniques		-
3	A course in electrical and	Sawhney A. K.	Dhanput Rai and Co., New

	electronic Measurements and		Delhi, latest publication
	Instrumentation		
4	Electrical Measurements and	Gupta J. B.	S. K. Kataria and Sons, New
4	Measuring Instruments		Delhi, latest publication

B. List of Major Equipment/Materials with Broad Specification

- i. Digital multimeter (31/2 digit)
- ii. Oscilloscope (dual channel)
- iii. Function Generator (Operating Modes: Sine, Square, Triangle, Ramp, Pulse, DC, Frequency Range: 0.2Hz to 20MHz)
- iv. DC power supply (-30V-0-30V)
- v. AC power supply (-30V-0-30V)
- vi. DSO (Dual channel, 100 MHz).

C. List of Software/Learning Websites

- i. http://freevideolectures.com/Course/2347/Industrial-Instrumentation
- ii. http://www.rejinpaul.com/2012/08/measurements-instrumentationee2201.html#
- iii. http://www.electronics-tutorials.ws/io/io_1.html
- iv. http://www.ni.com/white-paper/4045/en/

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof (Smt.) J. M. Patel**, ALPE, Dept. of Power Electronics, Dr. S. and S. S. Ghandhy College of Engg. and Technology, Surat
- **Prof. S. A. Patel**, LPE, Power Electronics Dept. Dr. S. and S. S. Ghandhy College of Engg. and Tech., Surat

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. A. S. Walkey**, Associate Professor, Department of Electrical and Electronics Engineering
- **Prof. Joshua Earnest**, Professor, Department of Electrical and Electronics Engineering