GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE:REFRACTORY (Code: 3345205)

Diploma Programme in which this course is offered	Semester in which offered
Ceramic Technology	4 th Semester

1. RATIONALE

This course imparts knowledge of manufacturing process, properties and application of refractory products. A ceramic engineer should have the knowledge of refractory raw materials, processing of raw materials, manufacturing process, properties, testing and application of refractory. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

- Plan and supervise the manufacturing of refractory.
- Perform different types of tests on refractory.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish various manufacturing process of refractory
- ii. Perform different types of Test for Refractory.
- iii. Implement pollution control and safety measures in refractory industries

4. TEACHING AND EXAMINATION SCHEME

Tea	ching So	cheme	Total Credits	Examination Scheme				
	(In Hou	rs)	(L+T+P)	Theory Marks		Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	4	7	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Explain Scope of	1.1 Scope of refractory in relation to other
Introduction	refractory	industries.
	1b. Define Refractory.	1.2 Definition of the term and its general
		application in various other industries.
Unit – II	2a. Describe different	2.1 Methods of manufacturing of refractory
Methods of	manufacturing process.	products.
Manufacture	2b. Distinguish various	2.2 Manufacturing process of firebricks,
	manufacturing process of	Chromite Brick, Dolomite
	bricks	Brick, Megnesite Brick, chrome-magnetite
	2c. Select appropriate	bricks, Mullite Brick, Sillimanite Brick
	refractory bricks.	and Insulating Brick
		2.3 Properties and use of different Refractory
		bricks
Unit – III	3a. Identify different physical	3.1 Physical properties of different types of
Properties and	properties of Refractory.	refractory bricks like porosity,
Tests of	3b. Perform different types of	permeability, specific
Refractory	Test for Refractory.	3.2 Determination of fusion point load
		5.2 Determination of fusion point. load
		of refractory, bulk density, thermal
		conductivity, electrical conductivity
		abrasion resistance and spalling resistance
Unit – IV	4a. Identify appropriate	4.1 Use of refractory in ferrous industries.
	Refractory materials for	4.2 Use of refractory in non-ferrous industries
Uses	Industries.	4.3 Use of refractory in boilers.
0303		4.4 Use of refractory in power generators and
		gas generators.
		4.5 Use of refractory in current industries.
Unit –V	5a. Explain various reasons	5.1. Pollution in Refractory industries
Pollution	for pollution.	5.2. Precaution during manufacturing
Control and	5b. Apply precaution	process of Refractory articles.
Safety in		
Refractory		
Industries		

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction	5	5	5	0	10
II	Methods of Manufacture	12	6	9	6	21
III	Properties and Tests of	11	4	6	6	16
	Refractory					
IV	Uses of Refractory	7	2	4	6	12
V	Pollution Control and	7	3	5	3	11
	Safety in Refractory					
	Industries					
Tot	tal Hrs	42	20 29 21 70		70	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise	Hours
		(Outcomes' in Psychomotor Domain)	
1	II	Prepare I.S. 6 brick.	8
2	II	Prepare I.S. 7 brick.	8
3	II	Prepare I.S. 8 brick.	8
4	II	Prepare Insulating brick.	8
5	II	Prepare acid resistance brick.	8
6	II	Prepare high alumina brick.	8
7	III	Identify physical properties of Refractory on samples.	2
8	III	Determine the porosity of a given refractory brick sample.	4
9	III	Determine the Bulk Density of a given refractory brick sample.	4
10	III	Determine the pyrometric cone equivalent of the given sample.	4

S. No.	Unit No.	Practical/Exercise	Hours
		(Outcomes' in Psychomotor Domain)	
11	III	Determine drying and firing shrinkage of a given refractory	4
		brick sample.	
12	III	Determine Cold Crushing Strength of a given refractory	2
		brick sample.	
13	III	Determine Thermal Shock resistance of Refractory sample.	4
		Total Hours	72

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Teacher guided self-learning activities.
- ii. Library survey regarding Refractory used in different industries.
- iii. Industrial Visits of one or two nearby Industries.
- iv. Presentation on different manufacturing process of Refractory brick.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any).

- i. Show video film/animation films/photographs related to refractory manufacturing process and its defects.
- ii. Give internet based assignments.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Books	Author	Publication
	Refractories, Their Manufacture, Properties and Uses	M.L.MISRA	M.L.MISRA
	Refractories	F.H.Norton	McGraw-Hill
	Refractories and its Applications	Kenneth Shaw	Halsted Press Div., Wiley

B. List of Major Equipment/Materials

- i. Different types of Refractory clays, Minerals and additives.
- ii. Weighing Balance, Varnier scale, sieving machine with sieves.
- iii. Lab Type Ordinary Pug Mill, De-arising Pug Mill, Mixers
- iv. Lab Type Toggle press, Hydraulic Press, Universal Testing Machine
- v. Lab Type Tray dryer, Hot Plate Dryer, rapid moisture Meter
- vi. Lab Type Chamber Kiln

C List of Software/Learning Websites

- i. http://en.wikipedia.org/wiki/Category:Refractory_materials
- ii. http://nptel.iitm.ac.in/courses/113104059/lecture_pdf/Lecture%209.pdf
- iii. http://www.cosmile.org/Manual/pdf/chapter12.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B. B. Patel, Lecturer L. E. College, Morbi
- Prof. H. B. Dedania, Retired Lecturer L. E. College, Morbi
- Prof. S. Prasaad, Retired Lecturer L. E. College, Morbi

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences