GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MASS TRANSFER-II (COURSE CODE: 3350502)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	5 th Semester		

1. **RATIONALE**

Diploma Chemical engineer have to supervise the preliminary purification of raw materials or final separation of products from by-products. They have to deal with changes in composition of solutions known as the mass-transfer operations. The large numbers of towers used for petroleum refining are examples of mass transfer operations. A substantial number of the unit operations of chemical engineering are concerned with the problem of changing the compositions of solutions and mixtures through methods involving chemical reactions. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. **LIST OF COMPETENCY**

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Perform separation operations for purification of raw materials and products

3. **COURSE OUTCOMES**

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Operate equipments for gas-liquid operations.
- ii. Perform distillation operations.
- iii. Calculate the product rate and number of trays for binary distillation.
- iv. Calculate various terms associated with humidity.
- v. Operate drying systems.
- vi. Use the concept of adsorption and ion exchange.
- vii. Operate various crystallisers.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	dits Examination Scheme						
((In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical		Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200	
4	0	4	8	70	30	40	60	200	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics		
Unit – ILiquid operationsEquipment for Gas1b. Classify equipments for Gas- Liquid operations1.2Liquid Operations1c. Describe construction of 		 1.1 Importance of Gas-Liquid operations 1.2 Classification of equipments for Gas-Liquid operations 1.3 Gas dispersed 1.3.1 Sparged vessel 1.3.2 Mechanically Agitated Vessel 1.3.3 Tray tower 1.3.3.1 Types of trays 1.3.3.2 Operating problems in tray tower 1.3.3 Tray efficiency 1.4 Liquid dispersed 1.4.1 Venturi scrubber 1.4.2 Wetted wall column 1.4.3 Spray tower 1.4.4 Packed tower and its operating problems 		
	1d. Distinguish different types of packing with diagram	1.5 Types of packing(a) Random (b) Regular		
Unit – II Distillation	 2a Describe applications 2b Describe the steps to Plot VLE, Constant pressure, Constant temperature equilibria 2c Explain Relative volatility and laws - Raoult's, Henry's 2c.1 State their uses 2d Differenetiate azeotropes 2e Explain Flash vaporisation, Differential distillation, Continuous rectification 2f Calculate amount and composition for Flash vaporization 2g Calculate product composition for Differential distillation 	 t 2.2.1Constant pressure equilibria 2.2.2 Constant temperature equilibria 2.3 Relative volatility 2.4 Raoult's law, Henry's law, and their uses 2.5 Maximum and minimum boiling azeotropes 2.6 Flash vaporization 2.6.1 Material balance 2.6.2 Calculation of amount and composition 2.7 Differential distillation a.7.1 Derivation of Rayleigh's equation 2.7.2 Calculation of product composition 		
	 2f. Apply McCabe-Theile method for multistage tray tower for enriching and stripping section 2f.1 Calculate product rates, minimum reflux ratio and number of trays for the given data 	 2.9 McCabe and Thiele method for enriching and stripping section 2.9.1 Introduction of Feed and Location of the feed tray 2.9.2 Total reflux ratio, Minimum reflux ratio, Optimum reflux ratio 2.9.3 Calculations of product rates, minimum reflux ratio and number of trays 		
	2g. Compare distillation techniques viz (a) Steam distillation (b)Vacuum and molecular distillation (c)Azeotropic and extractive distillation 2h. Distinguish Reboilers	 2.10 Important distillation techniques (a) Steam distillation (b)Vacuum and molecular distillation (c)Azeotropic and extractive distillation 2.11 Reboilers and their use 		

1				
Unit – III	3a. Analyse the VLE for a pure	<i>Humidification:</i> 3.1 Vapor-pressure curve		
Humidificat	substance	3.2 Saturated and unsaturated vapor-gas mixtures		
ion	3b. Explain the concepts of Absolute humidity, Relative saturation, Percentage saturation, Dew point, Dry bulb temperature, Wet bulb temperature, Adiabatic saturation temperature, Humid volume, Humid heat, Enthalpy	3.3 Concept of Absolute humidity, Relative saturation, Percentage saturation, Dew point, Dry bulb temperature, Wet bulb temperature, Adiabatic saturation temperature, Humid volume, Humid heat, Enthalpy		
	 3c.Evaluate the property of air using DBT and WBT 3e.1 Calculate –absolute humidity, relative saturation, percentage saturation for the given process data 	3.4 Calculations of absolute humidity, relative saturation, percentage saturation		
	3d. Draw psychometric chart3d.1 List Purposes of contact of gas with pure Liquid	3.5 Psychometric charts for Air-Water system3.6 Purposes of contact of gas with pure Liquid		
	3e. Explain construction and working with diagram	3.7 Equipments3.7.1 Cooling towers3.7.2 Spray chambers3.7.3 Spray ponds		
Unit – IV Drying	 4a. Discuss drying equilibrium and related concepts 4a.1 Define and calculation of Moisture content, Equilibrium and free moisture, Bound and unbound moisture 4a.2 Calculate - Moisture content, Equilibrium and free moisture, Bound and unbound moisture from the given data 	 4.1 Drying equilibrium 4.1.1 Insoluble solids 4.1.2 Hysterisis 4.1.3 Soluble solids 4.1.4 Definitions and calculation of Moisture content, Equilibrium and free moisture, Bound and unbound moisture 		
	4b. Classify drying & drying equipments	4.2 Batch and continuous drying4.3 Classification of drying equipment		
	4c. Describe construction and working of Drier equipments	 4.4 Construction and working of following Drier equipment Tray drier Tunnel drier Vacuum drier Rotary drier Spray drier Fluidized bed drier Pneumatic drier 		
	4d. Describe drying rate characteristics for batch drying with sketches4d.1 Derive equation for drying time for constant rate period and falling rate period	4.5 Drying rate curve for batch drying4.6 Derivation of equation for drying time for constant rate period and falling rate period		
	4e. Calculate drying time	4.7 Calculation of drying time		

	5a. Define and state uses of	Advantion & Ion Enchanges		
Unit – V		<i>Adsorption & Ion-Exchange:</i> 5.1 Definition and industrial application of		
	Adsorption	Adsorption		
Adsorption & Ion-	5h Classify Advantion and	5.2 Types of adsorption		
Exchange	5b. Classify Adsorption and adsorbents	5.3 Nature of adsorbents		
Exchange				
	5b.1State Commonly used adsorbents	5.4 Commonly used adsorbents		
	5d. Analyse Adsorption Equilibria	5.5 Adsorption Equilibria		
	5d.1 Describe Effect of temperature on	5.5.1 Single gases and vapours		
	adsorption and Heat of adsorption	5.5.2 Adsorption hysteresis		
		5.2.3 Effect of temperature on adsorption		
		and Heat of adsorption		
	5e. Apply Freudlich's equation for	5.6 Adsorption from liquids		
	single stage and multi stage cross-	5.6.1 Adsorption from dilute solution		
	current operation	5.6.2 The Freundlich's equation		
	5e.1Describe adsorption from dilute	5.6.3 Adsorption from concentrated solutions		
	and concentrated solution	5.6.4 Material balance and Freundlich's equation for		
	5f Describe construction and working	single stage and multistage cross-current operation		
	5f. Describe construction and working	5.7 Higgins contactor		
	of Higgins contactor, Pressure swing adsorber	5.8 Pressure swing adsorber		
		5.9 Ion-Exchange		
	5g. Appreciate concepts of Ion Exchange	5.9.1 Principles		
	5g.1 List Applicationv of Ion	5.9.2 Application		
	Exchange	5.9.3 Equilibria		
	Exchange	5.9.4 Rate of ion exchange		
	6a. State Industrial applications of	Crystallisation:		
Unit –VI	crystallization	6.1 Industrial applications of crystallization		
Crystallisati	6b. Explain equilibria mechanism for	6.2 Equilibria and yields		
on	crystallisation	6.3 Super saturation and methods to get it		
011	6b.1 State the methods to get Super	6.4 Nucleation		
	saturation	6.5 Crystal growth		
	6c. Explain working principle and	6.6 Crystallization Equipment		
	operation of Crystallization	6.6.1 Vacuum crystallizer		
	Equipment with sketch	6.6.2 Swenson walker crystallizer		
	6c.1Describe construction of	6.6.3 Draft tube-baffle crystallizer		
	Crystallization Equipment	······································		
	6d. State and explain Meir's theory	6.7 Meir's theory		
	6e. Calculate the crystal yield	6.8 Crystallization with and without seeding		
	······································	6.9 Calculations of crystal yield		
	6f. List steps to Prevent caking of	6.10 Caking of crystals and it's prevention		
	crystals			
	ci ystais			

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R U		Α	Total
		Hours	Level	Level	Level	Marks
Ι	Equipment for Gas	6	2	3	2	7
	Liquid Operations					
Π	Distillation	15	5	7	7	19
III	III Humidification		2	4	4	10
IV	Drying	10	4	4	5	13
V	Adsorption & Ion-	10	4	4	4	12
	Exchange					
VI	Crystallization	7	3	3	3	9
Total		56	20	25	25	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course

Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes in psychomotor domain)	
1	Ι	Demonstrate principle, construction and working of equipments for gas–liquid operations with models	4
2	Ι	Prepare vapour liquid equilibria curve at atmospheric pressure for Benzene-Xylene	4
3	II	Carry out simple distillation in glass assembly	4
4	II	Find out the effect of vacuum on distillation of liquid	4
5	II	Carry out continuous rectification in packed column	4
6	II	Find out amount of steam required in steam distillation	4
7	III	III Find out the property of atmospheric air with the help of wet bulb and dry bulb temperature	
8	III	Set desired conditions of humid air in humidity control cabin	4
9	IV	Prepare drying curve of moist sand and moist limestone	
10	IV	Find out equilibrium moisture content and drying time of wet solid	
11	V	Characterize industrial adsorbents and observe their samples	4

S. No.	Unit No.	Practical/Exercise (Outcomes in psychomotor domain)	Apprx. Hrs. Required		
12	V	Remove colour impurities from water using charcoal	4		
13	VI	Find out the yield of crystals from saturated solution without seeding	4		
14	VI	Find out the yield of crystals of from saturated solution with seeding	4		
	Total 5				

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Visit nearby industries and observe the working of mass transfer equipments.
- ii. Visit the website of reputed mass transfer equipment manufacturers and prepare a report on these equipments.
- iii. Prepare chart/ Model of mass transfer equipments.
- iv. Quiz, Debate

9. SPECIAL INSTRUCTIONAL STRATERGY (If Any)

i. Animated videos and drawings of equipments

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication	
1	Mass Transfer Operations	Robert E. Treybal	Mc Graw- Hill, 3rd Edition, 1981	
2	Unit Operation of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004, 7th Edition	
3	Unit Operations-II	K. A. Gavhane	Nirali Prakashan, Pune	
4	Unit Operations of Chemical Engineering, Volume-I	P. Chattopadhyay	Khanna Publishers, New Delhi, 1995	
5	Chemical Engineering, Volume-2	Coulsion and Richardson	Butterworth-Heinemann; 5 th Edition, 2002	
7	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York, 7 th Edition, 2004	

B. List of Major Equipment/Materials

- i. Distillation Assembly : 2000 ml round bottom flask, 1000 ml collection flask, joints, adapter with ³/₄ neck, simple/coiled glass condenser, thermometer pocket
- Packed column : Heating mantle single phase 240 v AC, 15 amp, max 250 °C, 2litre Flask, Column- MS and Borosil glass, ID-58 mm, OD-62 mm, Packing-100 mm glass, 400 mm MS, 50 mm glass, 12 mm dia rasching ring, Condenser- shell MS, tube Copper, Rotameter-0.5-5 LPH
- Steam distillation setup : Distillation kettle MOC-MS, dia-150 mm, height 300mm; jacket dia 175 mm height, height 300 mm, pressure gauge, steam relief valve, steam feed line with valve, drain valve, steam trap on jacket outlet, 25 mm glass wool insulation with MS cladding; Condenser MS shell, tube copper dia-150 mm,

height 250; Steam generator inner SS 304, outer MS dia 180 mm, height 270 mm; 25,5litre collecting beaker

- iv. VLE apparatus : Heating mantle with 1 litre flask, dimmerstat, digital temp indicator, air and water cooled condenser, mounted on wooden and MS frame, thermocouples
- v. Humidity cabin : Double walled thick gauge chamber SS 304, heater 500 W; Cooling circuit with compressor, expansion valve, condenser and refrigerant; Steam generator SS 304; Control panel with digital temperature indicator, low water level indicator, solenoid valve
- vi. Tray dryer : Temp range 50-100/200, thick MS chamber, digital temp indicator and controller, Air circulation by induction motor, Tray about 80×40×3 cm
- vii. Batch crystallizer : Jacket 325 mm round, 155 mm deep, 3mm thick, annulus 22.5 mm; 25 mm thick glass wool insulation, Aluminium cladding; motor-stirrer 10mm rod, speed regulator
- viii. Benzene, Toluene, Xylene, Sand, Limestone, silica gel, Charcoal, boric acid, Sodium sulphate, Potassium permanganate

C List of Software/Learning Websites

- i. www.unitoperation.com
- ii. http://nptel.ac.in/courses/index.php?subjectId=103103035
- iii. http://1rv07ch.files.wordpress.com/2010/05/lecture1-introduction2masstransfer.pdf
- iv. http://www.msubbu.in/ln/mt/
- v. http://chemeng.ir/download/Mass-Transfer/Mass_Transfer_Operations____Robert_Treybal_chemeng.ir.pdf
- vi. http://serve.me.nus.edu.sg/arun/file/teaching/ME6203_2013_Mujumdar.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. Harsh B. Shukla, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- Prof. Upasana T. Singh, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- Prof. Parul K Patel, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- Prof. N. N. Hansalia, Lecturer in Chemical Engineering, Government Polytechnic,
- Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences