GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: UTILITIES AND INSTRUMENTATION IN CHEMICAL PLANT

(COURSE CODE: 3350504)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	5 th Semester

1. RATIONALE

Diploma chemical engineer has to ensure smooth and proper operation of utilities and auxiliaries' plants such as steam, compressed air, instrumental air, inert gases, DM water and chilled water. These utilities are essential for manufacturing different chemical products. Use of measuring devices for the measurement of parameters like temperature, pressure, flow, level, viscosity, specific gravity, humidity are necessary for controlling chemical plant for producing materials of desired quality and to maintain plant safety. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Operate different utility plants and various types of instruments

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Use various methods for water softening and purification
- ii. Operate different types of steam generators
- iii. Operate compressors, blowers for handling air and inert gases
- iv. Use Refrigeration for Various applications
- v. Measure temperature, pressure, flow, level and viscosity
- vi. Operate various control valves and control systems

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total
								Marks
L	T	P	C	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Umi	(in cognitive domain)	
Unit – I	1a. Explain role of Utilities in	1.1 List and use of various utilities in chemical
	Chemical Plant	plant
Water as Basic	1a.1 List various utilities in	
Utility	chemical plant & uses	
•	1b. List sources of Water	1.2 Sources of water
	1c. Differentiate types of Water	Types of Water
		1.3 Hard & Soft water
		1.4 Boiler Feed water and demineralized water
	1d. Compare Softening processes	1.5 Methods of water softening processes
	of water	 Lime soda process (Hot & Cold)
		 Zeolite process
		 Ion exchange process
		Phosphate process
	1e. Explain the process of	1.6 Purification of water
	Purification of water from	 Screening
	raw water with sketches.	 Sedimentation
		 Coagulation
		Filtration
		Sterilization
Unit – II	2a. Explain uses of utilities -	Utilities:
	Steam, Air & Inert Gases	2.1 Use of Steam, Air & Inert Gases as utilities
	2b. Define properties of steam	2.2 Properties of steam
Steam, Air &		 Enthalpy
Inert Gases		Wet steam
		Saturated Steam
		Superheated steam
		Specific volume of steam
	2c. Label the different part of	2.3 Steam Generator : Classification ,
	steam generator	comparison, components
	2d. Classify steam generator	2.4 Factors affecting selection of Boiler
	2e. Select steam generator	
	2f. compare steam generators	
	2g. List the Factors affecting selection of Boiler	
		2.6 Construction and another of
	2f. Describe construction and Working of Locomotive Fire	2.6 Construction and working of (a) Locomotive Fire tube boiler
	tube boiler ,Lancashire boiler	(b) Lancashire boiler
	2g. Discuss utility air	2.7 Utility air
	25. Discuss utility un	Compressed Air
		Blower Air
		• Fan Air
		Instrumental air
	2h. Describe the working	2.11 Types of Air compressors
	principle, application of Air	Reciprocating Air compressors
	compressors –	Multistage compressors
	(a) Reciprocating Air	Rotary compressors
	compressors	Rotary compressors
	(b) Multistage compressors	
	(c) Rotary compressors	

TT 1.	Major Learning Outcomes	Topics and Sub-topics		
Unit	(in cognitive domain)			
	2i. Describe properties of Inert	2.12 Inert gas - Nitrogen, Argon		
	gases			
Unit – III	3a. Explain the working principle of refrigeration	3.1 Concept of refrigeration		
Refrigeration	3b. Distinguish methods of	3.2 Methods of Refrigeration		
	Refrigeration	Ice Refrigeration		
		 Evaporative Refrigeration 		
		 Vapor Refrigeration System 		
	3c. Describe COP and TOR of refrigeration	3.3 COP and TOR of refrigeration		
	3d. Use primary and secondary	3.4 Types of Primary Refrigerants		
	Refrigerants	Ammonia		
		 Halo Carbons (Freon of Different type) 		
		HFC (Hydro Fluorocarbon)		
		3.5 Types of secondary Refrigerants		
		• Water		
		• Brine		
T7 1/ TT7		3.6 Selection of Refrigerants		
Unit – IV	4a. Classify instruments in	4.1 Importance of instrumentation in chemical		
Basics of	chemical plant	plant 4.2 Classification of instruments		
Instrumentation	4b. Describe Basic elements of	4.3 Basic elements of instruments		
	instruments	4.3 Basic elements of instruments		
	4c. Compare Static and	4.4 Static and Dynamic Characteristics of		
	Dynamic Characteristics of	instruments		
	instruments			
	4d. Differentiate First and	4.5 First order system and second order system		
	second order system			
Unit- V	5a. Explain Temperature scale	5.1 Different Temperature scale		
	5b. Compare thermometers	5.2 Definition of thermometer		
Measuring	5b.1Explain Principle,	5.3 Principle, Construction & Working of:		
Devices	Construction & Working of:	Mercury in glass thermometer, Bi-metallic		
	Mercury in glass, Bi-metallic , pressure spring , resistance	thermometer, pressure spring thermometer, resistance thermometer,		
	thermometers	resistance thermometer,		
	5c. Describe Principles of	5.4 Principles of thermoelectricity		
	thermoelectricity and See-	5.5 See-back effect, Peltier effect and Thomson		
	back effect, Peltier effect and	effect		
	Thomson effect			
	5d. Describe principle,	5.6 Industrial thermocouple: their principle,		
	construction, working range,	construction, working range, lead wires		
	lead wires of thermocouple and Thermowells	5.7 Thermowells in details		
	5e. Explain principle,	5.8 Radiation and optical Pyrometers		
	construction, and working of	2.0 radiation and option 1 gromotors		
	Radiation and optical			
	Pyrometers			
	5f. Differentiate pressure gauges	1. Pressure gauges		
		- diaphragm, Bourdon tube gauge, Dead		
		weight Gauge, Strain gauge		
	5g. Describe principle,	5.10 Target meter, Vortex Shredding meter,		

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
	construction, and working of Target meter, Vortex Shredding meter, Turbine meter	Turbine meter
	5h. Classify and explain level measuring devices	 5.11 Classify: Liquid level measuring devices 5.12 Direct level measuring devices Probe and tape Sight glass Floats 5.13 Indirect level measuring devices. Air trap box method Diaphragm box method Bellow system Differential pressure manometer
	5i. Compare viscosity measurement methods	 5.14 Viscosity measurement by Capillary tube method Rotating cylinder method Torsion viscometer
	5j. Explain principle, construction, and working	 5.15 measurement of Specific gravity by hydrometer Humidity by hygrometer pH by pH meter
Unit – VI	6a. Explain Function of relays and interlocks	6.1 Function of relays and interlocks
Control Valves, Control Loops & Control System	6b. Explain schematic control loops for -Temperature control -Pressure control - Flow control - Level control	 6.2 Control loops Temperature control Pressure control Flow control Level control
	6c. Describe process control modes with sketches 6d. Explain uses of PLC and DCS System	6.6 Process control modes : P , P+I , P+I+D, ON -OFF 6.7 PLC and DCS system

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching Hours	R Level	U Level	A Level	Total Marks
I	Water as Basic Utility	7	3	3	3	9
II	Steam, Air & Inert Gases	14	6	6	6	18
III	Refrigeration	7	3	3	3	9
IV	Basics of Instrumentation	4	2	2	1	5
V	Measuring Devices	18	7	8	7	22
VI	Control Valves, Control	6	2	2	3	7
	Loops & Control System					
	Total	56	23	24	23	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.	Unit Practical/Exercise		Apprx. Hrs.	
No.	No.	Re		
1	I	Operate water treatment in water treatment plant	4	
2	I	Treat water using lime soda process 4		
3	II	Generate steam in laboratory using baby boiler	4	
4	II	Operate and test the working of air compressor	4	
5	III	Demonstrate different refrigeration cycles	4	
6	V	Measure Temperature by thermometer and thermocouple	4	
7	V	Measure Temperature by Bi-metallic thermometer	4	
8	V	Measure Pressure by mechanical pressure gauge	4	
9	V	Measure gas flow rate	4	
10	V	Measure level using direct method	4	
11	V	Measure viscosity by capillary tube method	4	
12	V	Measure specific gravity by Hydrometer	4	
13	V	Measure humidity by Hair hygrometer	4	
14	V	Measure pH by pH meter	4	
15	VI	Prepare a chart of components of DCS system	4	
16	VI	Demonstrate working of control valves and actuators using chart	4	
	Total (perform any practical for total 56 hours so that most units are covered)			

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Industrial instrumentation,	Donald P. Eckman.	JohnWilley and Sons, New
			York, 2004
2	Industrial Instrumentation &	S. K. Singh	3rd edition
	Control		Tata-McGrawHil, 1987
3	Process Instrumentation and	A P Kulkarni	15 th Edition, April 2011,
	Control		Nirali Prakashan, Pune
4	Unit operation of chemical	McCabe, Warren L.,	McGraw Hill
	Engineering.	Julian C. Smith	Publication, New York
			2004, 7 th Edition
5	Plant utilities	D. B. Dhone	2 nd Edition, 2012
			Nirali Prakashan, Pune
6	Process System Analysis &	Donald R. Coughnour.	2 nd edition, 1991, McGraw
	Control		Hill Publication, Newyork

B. List of Major Equipment/Materials

- i.Bi metallic thermometer Metal Brass/Invar, Range 40 ° F 800 ° F, 1 % span
- ii.Thermo Couple Thermocouple Wire: Pt/Rh or Fe/Constantan or Copper/Constantan,
 - Range Suitable to Material used, Lead Wire- Copper/Constantan, with suitable sheathing, with milivoltmeter, 1.5% accuracy
- iii. Burdon Pressure Gauge – Arc Length – 270° , Brass or Bronze or Copper or SS, Range 0-14 Kg/cm²
- iv.Gas Flow measurement Assembly
- v.Level Measurement Assembly
- vi.Capillary tube viscometer Oswald viscometer
- vii.Hair hygrometer
- viii.Hydrometer
- ix.Digital pH meter Range 1-14 pH

C List of Software/Learning Websites

- i. http://nptel.ac.in/courses/103103037/
- ii. http://www.silbert.org/MSA_WT_Manual.pdf
- iii. http://ppuchem.blogspot.in/2013/02/unit-1-notes.html
- iv. http://www.tecmaservice.it/pdf/wika_%20brochure_chimica.pdf
- v. http://www.npti.in/Download/Thermal/BoP/13%20Sulakshana%20Sule.pdf
- vi. http://www.isu.edu/estec/ic-ed-modules/Module-10-Flow-Measurement.pdf
- vii. http://www.betterbricks.com/sites/default/files/operations/om_of_boilers_final.pdf
- viii. http://solve.nitk.ac.in/dmdocuments/electrical/DCS write up.pdf
- ix. https://www.idc-online.com/technical_references/pdfs/instrumentation/
 - a. Industrial_Instrumentation%20-%20Flow.pdf

9. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Course/topic based presentation
- ii. Explore internet and visit websites of different chemical industries/supplier of plants and prepare reports on latest trends in utilities.
- iii. MCQ/Quiz

10. SPECIAL INSTRCTIONAL STRATEGY (If Any)

- i. Show animated and real videos/pictures of different plants
- ii. Demonstrate different measuring instruments/sensors in class.
- iii. Industrial visit of plant consisting water treatment plant and Boilers, Refrigeration and Control system
- iv. Arrange lectures of persons from industry.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Ms. Yamini S. Patel, Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- Mr. M. R. Acharya, Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. N. N. Hansalia**, Lecture in Chemical Engineering ,Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- **Dr. Bashirullah Shaikh,** Assistant Professor, Department of Applied Sciences