GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

COURSE TITLE: CHEMICAL ENGINEERING THERMODYNAMICS (COURSE CODE: 3350505)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	5 th Semester		

1. RATIONALE

Diploma Chemical engineer has to deal with the laws of thermodynamics which are applied to flow and non-flow processes in the plant to evaluate heat effects and energy transformation calculation accompanying physical and chemical changes, for calculating temperature change and to determine power generation efficiencies of engines and power plants. Understanding of basic concepts and application of thermodynamics are therefore necessary for chemical engineers. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Solve the problems related to heat and work requirements for physical and chemical changes.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish systems, functions, properties and processes
- ii. Explain various laws of Thermodynamics
- iii. Implement the first law of thermodynamics for non-flow & flow process.
- iv. Access the PVT behaviour of the fluids.
- v. Calculate the effects of heat changes during chemical reaction.
- vi. Apply the concepts of second law of thermodynamics.

4. TEACHING AND EXAMINATION SCHEME

Tooching Schome		Total Cradita	Examination Scheme											
1 ea ((In Hours)		(L+T+P)	Theory Marks		Theory Marks		Theory Marks		Theory Marks		Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	100						
3	2	0	5	70	30	00	00	100						

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

UnitTopics and Sub-topicsUnit – I1a. Describe scope of thermodynamics1.1 Scope and limitations of thermodynamicsIntroduction1.1 Define System, functions, properties Process and1.2 System, functions, properties	
Unit – I1a.Describe scope of thermodynamics1.1 Scope and limitations of thermodynamicsIntroduction1.1 Define System, functions, properties Process and1.2 System, functions, properties	
Introduction1.1Define System, functions, propertiesthermodynamicsand BasicpropertiesProcess and1.2System, functions, propertiesSystem, functions, propertiesSystem, functions, properties	
and Basic properties Process and 1.2 System. functions, properties	
Concept surrounding Process and surrounding	
1b. Explain the System, functions, 1.2.1 System-Homogeneous and	
properties, Process and heterogeneous, Closed and	
surrounding with examples of open, State of System	
chemical engineering field 1.2.2 Properties -Extensive and	
1c. Differentiate systems, functions, intensive	
properties and processes 1.2.3 Function -State and Path function	n
1d. Describe Extensive and intensive 1.2.4 Process -Reversible and	
properties irreversible process	
1e. Explain importance of Force, 1.3 Force, Pressure, Work and Energy	7
Pressure, Work and Energy 1.4 Steady state, Equilibrium state and	1
physical quantities, phase rule and Phase rule	
zeroth law of thermodynamics 1.5 Temperature and zeroth law of	
1f. Solve simple problems on -Force, thermodynamics	
Pressure, Work and Energy 1.6 Ideal gas temperature scale	
physical quantities, phase rule and 1.7 Simple examples (numerical)on	
laws of thermodynamics Force, Pressure, Work and Energy	
physical quantities, phase rule and	
laws of thermodynamics	
Unit – II 2a. Explain first law and energy – 2.1 First law of thermodynamics	
First Law of Internal Energy, Enthalpy and 2.2 Internal Energy, Enthalpy and	
Thermodyna Heat capacity concepts with Heat capacity	
mics examples of chemical engineering 2.3 First law for non-flow processes	
2b. Apply first law for non-flow & and flow processes of chemical	
flow process of chemical engineering	
engineering 2.4 Simple numerical on first law and	1
2c. Solve simple problems on first energy - Internal Energy, Enthalpy an	a
Enthalpy and Heat capacity	
Unit III 20. Explain DVT behaviour of pure 2.1 DVT behavior of pure fluids	
DVT fluids 3.2 Ideal ass and equation of state	
Rehavior 3b Distinguish Ideal gas Processes 3.2 Ideal gas Process :	
3c Compare equations of state for 3.3.1 Constant Volume process	
real gases 3.3.2 Constant Pressure process	
3d Solve simple problems on Ideal 3 3 3 Constant Temperature process	
gas Processes Equation of state 3.3.4 Adiabatic Process	
for real gases. 3 3 5 Polytronic Process	
3.4 Equation of state for real gases	
3.4.1 Vander Waals Equation	
3.4.2 Virial Equation	
3.4.3 Compressibility charts	
3.5 Simple examples(numerical)	

5. COURSE CONTENT DETAILS

∐nit	Major Learning Outcomes	Topics and Sub-topics
Omt	(in cognitive domain)	Topics and Sub-topics
Unit – IV	4a. Explain the heat effects of	4.1 Heat effects accompanying
Heat Effects	chemical reactions	chemical reactions:
	4b. Apply Hess's law of constant	4.1.1 The standard heat of reaction
	heat summation	4.1.2 The standard heat of
	4c. Calculate heat of reaction and	combustion
	temperature of reaction	4.1.3 The standard heat of formation
	4d. Solve simple problems on heat	4.2 Hess's Law of constant heat
	Effects in chemical reactions	summation
		4.3 Effects of temperature on heat of
		reaction
		4.4 Temperature of reaction
		4.5 Simple numerical
Unit – V	5a. Discuss limitation of first law	5.1 Limitations of first law
Second Law	5b. Compare different statements of	5.2 Statements of Second law
of	Second law	5.3 Heat reservoir. Heat engine and
Thermodyna	5c. Describe the concepts of Heat	Heat pump
mics	reservoir, Heat engine and Heat	5.4 Concept of Entropy
	pump	5.5 Carnot cycle and thermodynamic
	5d. Explain entropy	temperature scale
	5e.Explain carnot cycle and	5.6 Calculation of Entropy change
	thermodynamic temperature scale	during
	5f. Calculate entropy changes	5.6.1 Phase change
	5g. Explain the concept of entropy	5.6.2 Ideal gas processes
	and irreversibility	5.6.3 Adiabatic mixing
	5h. Solve simple problems on Second	5.6.4 Isothermal mixing
	law	5.6.5 Chemical reaction
		5.7 Clausius Inequality
		5.8 Mathematical statement of Second
		law
		5.9 Entropy and Irreversibility
		5.10 Simple numerical
		r · · · · · · · · · · · · · · · · · · ·

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Mark
Ι	Introduction and Basic Concept	07	3	4	5	12
II	First Law of Thermodynamics	06	3	3	4	10
III	PVT behavior	09	5	5	5	15
IV	Heat Effects	07	4	4	4	12
V	Second Law of	13	7	7	7	21
	Thermodynamics					
Tof	tal	42	22 23 25 70		70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

-----NIL-----

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Course/topic based presentation
- ii. MCQ/Quiz

9. SPECIAL INSTRCTIONAL STRATEGY (IF ANY)

Give as many simple numerical problems to students as possible in class itself and help them to solve if they get stuck.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication	
1	Chemical Engineering Thermodynamics	K. V. Narayanan	PHI publishers	
2	Introduction to Chemical Engineering Thermodynamics	J. M. Smith H.C. Vanness M. M. Abott	Tata McGraw Hill	
3	Thermodynamics	C.P.Arora	Tata McGraw Hill	
4	Chemical Engineering Thermodynamics	Y. V. C. Rao	Universities Press	
5	Chemical Process Principles Vol.2	A.Hougen K.M.Watson R.A.Ragatz	Asia Publications	
6	Textbook of Engineering Thermodynamics	R. K. Rajput	Laxmi Publication	
7	Chemical Engineering Thermodynamics	R. B . Varia	Atul Prakashan	
8	Applied Thermodynamics	P. B. Joshi	Nirali Prakashan	

B. List of Major Equipment/Materials

------Nil -----Theoretical Approach)

C. List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Manish R. Nasit,** Lecturer in Chemical Engineering, N. G. Patel Polytechnic, Isroli Ahwa.
- **Prof. Mukesh B. Dhangar,** Lecturer in Chemical Engineering, N. G. Patel Polytechnic, Isroli-Ahwa.
- Prof. R. P. Hadiya, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Prof. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences