GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INSTRUMENTATION & CONTROL ENGINEERING (COURSE CODE: 3351106)

Diploma Programme in which this course is offered	Semester in which offered		
Electronics and Communication Engineering	5 th Semester		

1. RATIONALE

Electronics is part and parcel of all modern instrumentation systems. Transducers, automatic process control, telemetry system, recorders, computer aided process control, data acquisition system and such others use a lot of electronics. Therefore, it is essential that every electronic and communication diploma engineer should know the basics of modern instrumentation and control systems so that the associated electronics can be maintained effectively. Hence, this course is developed to provide the fundamental knowledge of industrial instrumentation and control system to students to enable them to maintain the electronics modules.

2. LIST OF COMPETENCY

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competency

• Analyze different types of instrumentation and control systems

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various types of instrumentation systems and their modules.
- ii. Select appropriate transducer for measurement of physical parameters.
- iii. Monitor working of different types of process control systems.
- iv. Select appropriate types of telemetry system and recorders for relevant applications.
- v. Analyzes various types of computer aided process control system.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
04	00	02	06	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment.

Unit	Major Learning Outcomes (outcomes in cognitive domain)	Topics and Sub-topics
Unit-I Introduction to	1a. Describe different elements of instrumentation system with examples	1.1 Elements of instrumentation system including process and biomedical instrumentation
Instrumenta tion	 1b. Classify the instrumentation systems 1c. With sketches describe various types of standard instrumentation signals 	 i. Null and Deflection ii. Control and Monitoring iii. Analog and Digital 1.2 Standard instrumentation signals: Pneumatic, Current loop, 0- 10 volts
	 1d. Justify the need of signal conditioning 1e. Explain different types of Signal conditioning systems 	1.3 Signal conditioning: DC signal and AC signal conditioning.
Unit-II Measuremen t of Physical Parameters	2a. Describe measurement techniques of physical parameters like torque, length, speed, level	 2.1 Measurement techniques Measurement of torque Measurement of length Measurement methods of level measurement: Laser, Microwave, Optical, Ultrasonic, Eddy current.
	 2b.Explain working of magnetic flow meter 2c. Describe different types of pressure measurement techniques 	 2.2 Magnetic flow meter 2.3 Pressure measurement techniques by Strain gauge, Potentiometer,
	 2d.Classify temperature measurement techniques 2e. Describe working of different types of pyrometers 2f. Explain working of various types of position sensors 	 iii. Pressure switch 2.4 High and low temperature measurement i.Radiation type pyrometer ii.Optical type pyrometer 2.5 Position sensor i. Resistive type ii. Optical type iii. Inductive type
	 2g.Describe measurement techniques to measure humidity and moisture for different applications 2h.Describe working principle of Magneto-strictive, Hall effect, Ionization and Electrochemical Transducers 	 2.6 Measurement of moisture and humidity 2.7 Special types of transducers: Magneto-strictive transducers Hall effect Transducers Ionization Transducers Electrochemical Transducers

5. COURSE DETAILS

Unit	Major Learning Outcomes (outcomes in cognitive domain)Topics and Sub-topics
Unit-III Automatic Process Control	 3a. Explain need for automatic process control system. 3b. Explain different elements of automatic process control system. 3c. Describe different modes of process control system 3c. Describe different modes of process control system 3d. Need of automatic process control system 3d. Need of automatic process control elements of control elements of process control system 3d. Need of automatic process control elements of process control system 3d. Explain different elements of control elements of process control system 3d. Describe different modes of process control system 3d. Describe different modes of process control system 3d. Modes of process control system 3d. Open loop
	ii. Closed loop(manual, on-off, P, I, D, PI, PD, PID)
Unit-IV	4a. Differentiate the different types 4.1 Electrical telemetry system of telemetry systems (current, position, impulse)
Telemetry System And Recorders	 4b. Explain working of various types of electronic telemetry systems. 4.2 Electronic telemetry System(pulse telemetry-Pulse Amplitude Modulation, Pulse Frequency Modulation, Pulse Duration Modulation, Pulse position modulation)
	4c. Describe the function of smart 4.3 Smart (intelligent) transmitters and intelligent transmitters.
	 4d. Explain the working of different types of recorders with block diagram 4e. Name the electronic components used in Telemetry System And Recorders 4.4 Recorders Types i. Strip chart ii. Circular chart iii. X-Y plotter
Unit-V Computer Aided Control	 5a. State the application of computers in process control. 5b. Explain at the block diagram level the different elements of computer hased control sustained control 5.2 Block diagram of the computer based control
Systems	5c. Describe the function of various blocks of CNC machine. 5.3 CNC machine, various blocks of CNC machine
	5d.Describe the use of the different computer interfaces to connect various electronic devices.5.4 Standard interfaces: RS- 232,RS-422A,RS-485,GPIB
	5e. Describe the functions of Data acquisition system.
	5f. Explain concept of virtual instrumentation.5.5 Virtual Instrumentation: Conventional and Graphical Programming.

Uni		Toophing	Distribution of Theory Marks			
	Unit Title	Hours	R	U	Α	Total
L			Level	Level	Level	Marks
I.	Introduction to Instrumentation	8	4	6	2	12
II.	Measurement of Physical Parameters	12	4	5	6	15
III.	Automatic Process Control	12	4	6	5	15
IV.	Transmitters, Telemetry System and Recorders	12	4	5	4	13
V.	Computer Aided Control Systems	12	6	4	5	15
	Total	56	22	26	22	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Revised Bloom's taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercises	Approx Hrs. Required
1	Ι	Analyze standard instrumentation signals waveforms.	2
2	II	Test the performance of pressure type Potentiometer	2
3	II	Measure torque using strain gauge	2
4	II	Check the performance of synchros	2
5	II	Measure temperature using radiation/optical pyrometer	2
6	II	Measure pressure using strain gauge	2
7	II	Test a DC position control system	2
8	II	Measure water level using resistive transducer	2
9	II	Measure water level using capacitive transducer	2
10	II	Measure water Level using ultrasonic transducer	2

S. No.	Unit No.	Practical/Exercises	Approx Hrs. Required		
11	II	Analyze the time response of second order processes with P Control	2		
12	III	I Analyze the time response of second order processes with P+I Control			
13	III Analyze the time response of second order processes with P+D Control		2		
14	III	Analyze e the time response of second order processes with P+I+D Control	2		
15	5 IV Use x-y recorder and graphic recorder for the appropriate quantity measurement.		2		
16	IV	Analyze performance of PAM type telemetry system	2		
17	IV	/ Analyze performance of PPM type telemetry system			
18	V	Analyze performance of data acquisition system			
19	V	Transfer various type of data using RS-232,RS-422A,RS-485,GPIB standard cables.	2		
Total H	Total Hours (perform practical from all units so that 28 hours are utilised)38				

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Test different types of transducers using simulation software like Prosim, simulink, lab volt etc.
- ii. Present seminar on any one topic related to the subject.
- iii. Develop a small Instrumentation and Control project using LAB VIEW software.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Industrial Visit
- ii. Internet based assignments
- iii. Organising expert lecture
- iv. Display of appropriate video films

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Books	Author	Publication
1.	Industrial instrumentation and	Singh, S.K.	TATA McGraw-Hill, New
	control		Delhi (Latest Edition)
2.	Introduction to	Ghosh, A. K.	PHI Learning, New Delhi
	Instrumentation and Control		(Latest Edition)
3.	Electronic measurement &	Jones, Larry, Chin,	Prentice Hall
	Instrumentation systems	A foster	International Edition
4.	Industrial Instrumentation and	Kumar, Sunil	S.K.Kataria and Sons, New
	Control		Delhi (Latest Edition)
5.	Transducers and	D. V. S. Murthy	PHI Learning, New Delhi

S.No.	Title of Books	Author	Publication
	Instrumentation		(Latest Edition)
6.	Industrial Instrumentation	Krishnaswamy,	New Age International,
		Vijayachitra, K.S.	New Delhi
			(Latest Edition)
7.	Process Control	Curtis D. Johnson	Pearson Publication,
	Instrumentation Technology		New Delhi
8.	Hand book of Maintenance	Garg, H. P.	TATA McGraw-Hill,
	Engineering.		International Edition
9.	Computer-Based Industrial	Kant, Krishna	PHI Learning, New Delhi
	Control		(Latest Edition)
10.	Virtual Instrumentation Using	Gupta, Sanjay and	TATA McGraw-Hill, New
	Lab View	John, Joseph	Delhi (Latest Edition)

B) List of Major Equipment/Materials with Broad Specifications

- i. Instrumentation and control trainer kits
- ii. DC Regulated Power supply
- iii. Function generator
- iv. CRO
- v. Digital Storage Oscilloscope

C) List of Software/Learning Websites

Any simulation software that shows working of different instrumentation and control circuits like Prosim, simulink, LAB VIEW etc.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Shri B. P. Raval, Sr. Lecturer (EC), Govt. Polytechnic, Rajkot.
- Shri T. R. Parmar, Sr. Lecturer (EC), Govt. Polytechnic, Palanpur.
- Shri B.B.Renuka, Sr. Lecturer (EC), AVPTI, Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

• **Prof. (Mrs.) Anjali Potnis,** Assistant Professor, Department of Electrical and Electronics Engineering.