GUJARAT TECHNOLOGICAL UNIVERSITY, AHEMDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PHYSICO CHEMICAL TREATMENT OF WATER & WASTE WATER (COURSE CODE: 3351302)

Diploma Programme in which this course is offered	Semester in which offered
Environmental Engineering	5 th Semester

1. **RATIONALE:**

Environmental challenges are increasingly impacting the life of community at large, particularly due to water quality & waste water related problems. The course aims to prepare students to develop understanding and maintain quality of water & waste water by testing, analysis, treatment &monitoring to keep the environment and community healthy & safe. This course on treatment of water and waste water is an essential course for diploma programme in Environmental Engineering. As environmental technicians/engineers they should develop certain abilities relating to testing, treatment of water & waste water. As Environmental Engineers they should also be conversant with the sedimentation, coagulation, filtration and disinfection of water and waste water. They should also be conversant with denaturing and disposal of sludge. This course attempts to develop all of these abilities in pass outs.

2. LIST OF COMPETENCY:

The course content should be taught and with the aim to develop required skills in students so that they are able to acquire following competencies.

- Estimate the quantity of water required for domestic and industrial uses and waste water generated by domestic and industrial use.
- Supervise operation and maintenance of the fresh water and waste water treatment plants.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Estimate water for domestic and industrial requirement
- ii. Explain the characteristics of water and waste water.
- iii. Determine the quality of generated sludge by treatment of water and waste water and various methods for disposal of sludge
- iv. Explain methods of disinfection, chlorination chlorine dose, chlorine demand,
- v. Describe process for removal of oil, grease etc & disposal of skimming
- vi. Supervise sludge dewatering and disposal process.

vii. Operate and maintain the sedimentation plant

4. TEACHING AND EXAMINATION SCHEME

	aching So		Total Credits	Examination Sched				dule
	(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
4	2	2	8	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics And Subtopics		
	(in cognitive domain)			
UNIT –I	1a. Understand quality of water and	1.1 Quality of water and		
Quality,	know potable water and treated	wastewater		
Quantity of	water quality standards	1.2 Wholesome water		
Water and	1b. Describe characteristics of water	1.3 Impurity of water		
Waste	and examination of water	1.4 Characteristics of water		
Water	1c. List the standards of potable	1.5 Examination of water		
	water quality	1.6 Standards of potable water quality		
	1d. Explain spectrum of particulate	1.7 Characteristics of sewage		
	size distribution with sketches	1.8 Examination of sewage		
	1e. Describe variation in water flow	1.9 Standards of quality of treated water		
	and the steps to estimate	and wastewater		
	-water for domestic and industrial			
	requirement	2.2 Waste water and gas flow		
	-waste water quantity, gas flow	2.3 Water requirement for domestic and		
		industrial purposes		
		2.4 Waste water formation and estimation		
		2.5 Spectrum of particulate size distribution		
		2.6 Variation of flows		
UNIT-II	2a. Describe purpose of screening,	3.1 Purpose of screenings and terms :		
Screening	skimming, flotation and	blinding, stratification, contamination		
and	equalization.	(oversize, fines, foreign body), gradation,		
Skimming	2b. Explain types of screens and	grading,		
	terms related to screening and	3.2 Flow equalization		
	skimming	3.3 Types of bar racks and screens		
	2c. Describe removal of oil, grease	3.4 Disposal of screenings		
	etc & disposal of skimming	3.5 Removal of oil, grease etc.		
		3.6 Floatation		
		3.7 Skimming tank		
		3.8 Disposal of skimming		

UNIT-III	3a. Classify sedimentation tanks for	SEDIMENTATION		
Sedimentatio	water and waste water	4.1 Introduction		
n	3b. List the characteristics of the	4.2 Principles of Sedimentation and Stokes'		
	settable solids	law applied to fluids		
	3c. List the factors influencing &	4.3 Characteristics of the settleable solids		
	deciding size sedimentation tank	4.4 Classification of sedimentation tanks for		
	for water and wastewater	water and waste water		
	3d. Describe sedimentation	4.5 Factors influencing sedimentation		
	3e. explain terms related to	4.6 Deciding size of sedimentation tank for		
	sedimentation	water and wastewater		
	3f. List the types of coagulants and	4.7 Standard design loading		
	their suitability	4.8 Detention period		
	3g. Describe coagulation,	4.9 Coagulation – purpose, principle		
	Flocculation unit operations	4.10 Types of coagulants and its suitability		
	3h. Define terms related to	4.11Determination of optimum coagulation		
	coagulation and flocculation.	dose.		
	3i. Describe the feeding of coagulant	4.12 Feeding of coagulant and feeding		
	and working of feeding devices	devices		
	3j. Describe the design criteria of	4.13 Flocculation and flocculation tanks and		
	flocculator, clarifiers.	design criteria of flocculator		
	3k. Explain flocculation	4.14 Clarifiers, its types and design		
	31. List the types of clarifiers	criteria.		
	3m. Describe method of grit removal			
	& measuring settling efficiency	4.16 Grit removal		
	of particles in clarifiers			
UNIT-IV	4a. Describe filtration	4.1. Theory of filtration		
Filtration	4b. List the types of filters	4.2. Mechanism for particle size		
	4c. explain terms related to filtration	4.3. Hydraulics of filters		
	4d. Explain with the remedies Filter	4.4. Types of filters and their flow		
	clogging, Filter washing and	direction		
	Break through	4.5. Filter clogging		
	4e. State Advances in filtration	4.6. Filter washing		
		4.7. Break through		
		4.8. Deciding size of filter unit		
		4.9. Advances in filtration		

TINITT V	50 Deceribe coftening	5.1 Chamical presinitation		
UNIT-V	5a. Describe softening	5.1. Chemical precipitation		
Softening	5b.Explain methods of softening	5.2. Water and wastewater softening		
Desalination	5c. Describe desalination	5.3. Estimation of dose of chemical		
&	5d.Explain methods of desalination	5.4. Methods of softening - ammonia,		
Disinfection	5e. Describe disinfection	borax, lye, lime-soda, chelating, Ion-		
	5f. Explain methods of disinfection	exchange method etc.		
	chlorination – chlorine dose,	5.5. Methods of removal of dissolved		
	Chlorine demand,	solids - solar distillation gadgets and		
	5g.Describe application of chlorine	plants, direct freezing, reverse osmosis,		
	5h.Describe methods of removal of	electrolysis		
	dissolved solids viz	5.6. Methods of disinfection		
	- Solar distillation gadgets and	-chlorination – chlorine dose, chlorine		
	plants,	demand, application of chlorine		
	-Direct freezing,	5.7. Use of various forms of chlorine,		
	- Reverse osmosis,	break through chlorination		
	- Electrolysis	5.8. Removal of colour		
	5i. Describe removal of colour			
UNIT-VI	4.1. Know sources of sludge	6.1. Sources of sludge		
Sludge	4.2. List the steps to Estimate the rate	6.2. Estimation of bulk density of sludge		
Dewatering	of filtration	6.3. Estimation of rate of filtration		
and Disposal	4.3. Describe principles of dewatering	6.4. Principles of dewatering		
	4.4. Explain methods of dewatering	6.5. Methods of dewatering and		
	4.5. Describe thickening, lagging	suitability		
	Elutriation of sludge	6.6. Thickening of sludge		
	4.6. Explain chemical conditioning,	6.7. Chemical conditioning		
	vacuum and pressure filtration	6.8. Elutriation of sludge		
	-	6.9. Vacuum and pressure filtration		
		6.10. Sludge lagging		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title	Teaching	Distribution Of Theory Marks			5
		Hours	R Level	U Level	A Level	Total Marks
Ι	Quality, Quantity of Water and Wastewater	10	4	3	5	12
II	Screening and Skimming	7	3	3	3	9
III	Sedimentation	10	4	4	4	12
IV	Filtration	6	2	3	3	8
V	Softening, Desalination and Disinfection	14	5	5	8	18
VI	Sludge De-watering and Disposal	9	3	3	5	11
	TOTAL	56	21	21	28	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXCERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	PRACTICAL/EXERCISE (outcomes in psychomotor domain)	Approx. Hrs. Required
1	Ι	Test the Quality of Water & Wastewater - Demonstration of various tests related with physical properties of water and wastewater.	8
2	II	Demonstrate screening and skimming process by different types of screens and draw their sketches.	4
3	III	Demonstrate functioning of various types of filters for water and wastewater.	4
4	III	Demonstrate various methods of water softening.	4
5	IV	Demonstrate process of desalination.	4
6	IV	Demonstrate disinfections process of water and wastewater.	4
TOT	AL		28

Sr. No.	Unit No.	List of Tutorial Exercises	Approx. Hrs. Required
1	Ι	Estimate the Quantity of Water & Wastewater: Tutorials based on estimation of quantity of water and waste water.	8
2	II	Screening And Skimming: Tutorials based on design.	6

3	II	Tutorial on Sedimentation.	4
4	III	Tutorial based on design of filters.	4
5	VI	Sludge Dewatering And Disposal: Tutorials based on estimation of generation of sludge and study of method of sludge disposal.	6
		TOTAL	28

8. SUGGESTED LIST OF STUDENT ACTIVITIES:

- i. Explore internet for different water treatment processes being used to treat fresh and waste water and prepare report based on these.
- ii. Prepare Charts/Models for different water treatment processes.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any):

- i. Use video films/photographs/charts/Models to explain different water treatment processes.
- ii. Arrange field visit to civic and industrial water and waste water treatment facilities.
- iii. Arrange lecture of experienced water treatment engineers.
- iv. Ask students to collect samples of water from different places in the city and test them and report the quality to local authorities every year. Keep record to see how quality is changing over the years

10. SUGGESTED LEARNING RE3SOURCES A. LIST OF BOOKS

Sr. No	Title Of Books	Author	Publication
1	Text book of Water supply and Sanitary Engg.	S K Hussain	Oxford And IBH
2	Water Supply and Sanitary Engg	G S Birdi	Dhanpatraj and Sons
3	A text book of Water Supply.	V N Gharpure	Allied Book House
4	A text book of Sanitary Engg.	V N Gharpure	Allied Book House
5	Water supply and Sanitary Engg.	Vazirani and Chandola	Khanna Publishers
6	Wastewater Engineering, Treatment, Disposal, Reuse	Metcalf and Eddy	McGraw Hill International Edition.
7	Water supply and Sewerage.	E W Steel and Terence J McGhee	McGraw Hill Book Company

B. Major Equipment:

- i. Testing Equipment for testing various quality of water
- ii. Models/Charts of different treatment processes.
- iii. Model/Charts of different treatment equipment

C. List of Software and Learning Websites:

- i. www.gpcb.gov.in
- ii. www.gwssb.org
- iii. www.cpcb.nic.in
- iv. www.neeri.res.in
- v. water.me.vccs.edu/courses/ENV115/lesson9.htm
- vi. https://www.epa.ie/.../water/wastewater/EPA_water_treatment_manual_pr.
- vii. dcomm.cxc.lsu.edu/portfolios/08spr/spuroh1/.../processfinal.pd

11. COURSE CURRICULAM DEVELOPMENT COMMITTEE. <u>Faculty Members from Polytechnics</u>

• **Prof .M.C. Sanandiya,** Lecturer in Environmental Engineering, K. J. Polytechnic, Bharuch,

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. V.H. Radhakrishnan**, Professor, Department of Civil and Environmental Engineering.
- **Prof. Shashi Kant Gupta.** Professor and Coordinator for State of Gujarat.