GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ADVANCE FOUNDRY (COURSE Code: 3352107)

Diploma Programme in which this course is offered	Semester in which offered
Metallurgy Engineering	5 th Semester

1. RATIONALE

Different type of castings find application in one or other form in almost every walk of life. Modern casting methods in foundry have made it possible to produce quality and durable castings. For a specific casting, different modern casting techniques are to be adopted depending upon shape, size, material and use. Therefore in modern age it is very essential for metallurgical engineers to know about different types of ferrous and non ferrous alloys castings applications

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Plan and supervise production processes in foundry.

3. COURSE OUTCOMES

The theory should be taught and practical should be performed in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Explain solidification process for different metals
- ii. Construct structure properties relationship for pure metals
- iii. Design riser and getting system for castings of different shapes
- iv. Explain the Investment casting, Shell moulding and Die casting processes in steel manufacturing.
- v. Explain costing processes for non ferrous metals

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
(In Ho	(In Hours) (L+T+P) Theory Marks		Iarks Practical Marks		Total Marks			
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAIL

I Init	Major Learning Outcomes	Topics and Sub-topics
Umt	(in cognitive domain)	
Unit – I	1a. State Advances in	1.1 Advancement in material handling
Introduction	- material handling systems of	systems in foundry.
to advance	foundry	1.2 Quality aspects in foundry.
foundry	- Quality	1.3 Pollution control in foundry.
	- Pollution control	
Unit – II	2a. Describe the characteristics of	Solidification:
Solidification	liquid metal	2.1 Structure of pure metals.
Process	2b. Explain Inoculation	2.2 Solidification of alloys.
	2c. Construct structure properties	2.3 Construct structure properties
	relationship	relationship.
	2d. Explain structure of pure metals	2.4 Characteristics of liquid metal.
	2e. Describe solidification of alloys.	2.5 Inoculation and other treatment.
	21. State characteristics of liquid	
Unit III	Inelal	Digon and Cating System
Unit – III Dicor and	3h. Calculate riser Eagling	3.1 Castings design
Cating	distance	3.2 Riser design parameters
System	3c State Gating types	3.3 Riser calculation
System	3d Calculate Gating ratio	3.4 Feeding distance
	Su. Calculate Gating failo	3.5 Gating types · Pressurised and non
		pressurised
		3.6 Gating calculation.
		3.7 Gating ratio.
Unit – IV	4a. State special Casting	Special Casting Methods:
Open Hearth	Methods	4.1 Investment casting.
and Electric	4b. Describe Investment	4.2 Shell moulding.
Arc Furnace	casting, Shell moulding and Die	4.3 Die casting
Steel Making	casting processes in steel	
	manufacturing	
Unit – V	5a. State the properties of green	Casting of Ferrous Metals:
Casting of	sand mould for steel casting	5.1 Properties of green sand mould for
Ferrous	5b. Describe solidification of steel	steel casting.
Metals	casting	5.2 Solidification of steel casting.
	5c. Explain the gating and riser for	5.3 Gating and riser for steel casting.
	steel casting	5.4 Steel melting.
	5d. Describe production of S. G.	5.5 Production of S.G.Iron.
X 7 1 4 X 7 X	lron	
Unit - VI	6a. Explain principle aluminium	Casting of Non Ferrous Metals:
Casting of	alloying	6.1 Aluminium alloying principle.
Non Ferrous	ob. State the engineering properties	0.2 Aluminium alloys castings
wietais	6. Describe A1 and Cy secting	6.3 Enga properties of Al costing ellows
	beschiele AT and Cu casting	6.5 Engg. properties of AI casting alloys.
	practices	6.5 Al casting practice
		0.5 AI casuing practice.

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
i.	Introduction to advance	04	04	02	02	08
	foundry					
ii.	Solidification Process	06	06	03	03	12
iii.	Riser and Gating System	12	06	06	08	20
iv.	Open Hearth and Electric Arc	08	04	06	04	14
	Furnace steel making					
v.	Casting of Ferrous Metals	08	02	04	04	10
vi.	Casting of Non Ferrous Metals	04	02	02	02	06
To	tal	42	24	23	23	70

6 SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Legends: R = Remember U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7 SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty members should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

SR NO.	UNIT	PRACTICAL EXERCISE	APPROXIMATE HRS REQUIRED
1	V	Prepare Simple pattern for steel castings.	4
2	VI	Prepare mould and measure of mould hardness by	4
		mould hardness tester.	
3	V	Melt and cast given Aluminium for an object.	4
4	V	Measure fluidity of casting metals.	4
5	V	Observe microstructure of cast steels.	4
6	V	Measure the graphite flakes size and type in C.I.	4

7	VI	Identify and understand various casting defects with	2
		their causes and remedies.	
8	V and	Determine the effect of hardness and moisture on	2
	VI	permeability of sand.	
9	VI	Determine the effect of grain size and clay content on	2
		permeability of sand.	
		Total	30

8 SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students may prepare layout of integrated advance foundry plant by exploring internet.
- ii. May undertake Industrial visit of any advance foundry plant.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange industrial visit of any modern foundry plant
- ii. Show Video/animation films and Photographs of different casting processes.
- iii Seminar by group of students on problems, issues and new trends in foundry industry.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

S.	Title of Books	Author	Publication
No.			
1	1. Principles of metal casting.	Heine & Rosenthal.	
	by Heine & Rosenthal.		
2	2. Foundry practice. by	Salman & Simons.	
	Salman & Simons.		
3	3. Foundry technology. by	M. Lal.	
	M.Lal.		
4	4. Fundamentals of metal	P. Mukerji	
	casting. by P. Mukerji		
5	5 . Foundry engineering by	N.K.Shrinivasan.	
	N.K.Shrinivasan.		

B. List of Software/Learning Websites

Searching engine could be used to locate steel manufacturing related sites, such as:

i. http://www.industry.siemens.com/verticals/metals-

industry/en/metals/steelmaking/ld-steelmaking/Pages/home.aspx

- ii. http://www.carbonandgraphite.org/pdf/steel_production.pdf
- iii. http://corporate.arcelormittal.com/who-we-are/from-ore-to-steel
- iv. http://www.topforge.co.uk/Processes.htm
- v. http://en.wikipedia.org/wiki/Steelmaking

vi. http://www.steel.org/Making%20Steel/How%20Its%20Made/Processes/Processes

% 20 Info/The% 20 Basic% 20 Oxygen% 20 Steel making% 20 Process.aspx

vii. http://www.steelconstruction.info/Steel_manufacture

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Smt B. H. Goyal**, I/c. Head of Department of Metallurgy, Dr S and S.S Ghandhy college of Engg. and Technology
- **Dr. G.H Upadhyay**, Professor of Metallurgy, Department of Mechanical Engineering, L.D.College of Engineering, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. C.K Chugh, Professor, Department of Mechanical Engineering
- Dr. Shashi Kant Gupta, Professor and Coordinator for State of Gujarat.