GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: AC MOTOR DRIVES (COURSE CODE: 3352401)

Diploma Programme in which this course is offered	Semester in which offered
Power Electronics	5 th Semester

1. RATIONALE

Most of the modern AC motors and generators are controlled by power electronic circuits due to their versatility. The duty of the diploma engineers in the industry is to keep them in operating condition and reduce the downtime. It assumed that the students who take this course are already aware of the fundamentals of electronic devices and circuits. Hence this course is designed to maintain different types of AC motors and their circuits.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Maintain different types AC drives.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Use power electronic-based speed control methods for AC machines.
- ii. Maintain Stator Voltage control drives.
- iii. Maintain Rotor Frequency control drives.
- iv. Maintain Drives having control from rotor side.
- v. Maintain Synchronous motor drives.

4. TEACHING AND EXAMINATION SCHEME

Teac	ching S	cheme	Total Credits	Examination Scheme				
(In Hours)		(L+T+P)	Theory Marks Prac		Practical	Marks	Total Marks	
\mathbf{L}	T	P	С	ESE	PA	ESE	PA	150
4	1	2	7	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Major outcomes in cognitive domain)	
Unit – I	1a. Classify different types of AC Drives.	1.1 AC drive classification
AC Drive	1b. Describe general AC Drive	1.2 Basic working principle of AC
Fundamentals	specifications.	Drives general equations of
	1c. Explain basic working principle of a	induction motors.
	typical AC drives.	1.3 General AC drive
		specifications.
	1d. Explain speed torque characteristics of	1.4 AC motors; Speed- Torque
	induction Motors	characteristics of a induction
	1e. Explain various speed control methods	motor
	of AC motors	1.5 Speed control methods of AC
		motors: stator voltage, stator
		frequency, stator voltage and
		frequency, stator current, static
		rotor-resistance, slip-energy
		recovery.
Unit – II	2a. State the advantages of squirrel cage	2.1. Squirrel cage induction
Stator Voltage	induction motor drives.	motor
control Drives	2b. Describe the working of AC voltage	2.2. AC voltage controller for 3-
	controller for 3-Ø induction motor	Ø induction motor
	with sketches.	2.3. Closed loop speed control
	2c. With a block diagram describe the	using stator voltage control
	closed loop speed control of motor	
	using stator voltage control.	
	2d. With sketches, describe working of	2.4. Four quadrant AC voltage
	four quadrant AC voltage	controller.
	controller	2.5. Merits and demerits of stator
	2e. State merits and demerits of stator	voltage control
	voltage control.	
Unit – III	3a. Explain variable frequency	3.1. Variable frequency
Rotor	characteristics of induction motor.	characteristics
Frequency	3b. With a block diagram describe the	3.2. Block diagram of variable
control drives	working of variable frequency speed	frequency speed control.
	control.	3.3. Concept of Voltage source
	3c. Differentiate between VSI and CSI	inverter (VSI) and current
	circuits	source inverter (CSI)
	3d. Describe working of VSI fed drive	3.4. VSI fed induction motor
	With the help of sketches.	drive: braking and multi
	3e. Explain breaking and multi quadrant	quadrant operation.
	operation of voltage source inverter	
	fed drive for induction motor	
	3f. With sketches describe the working of	3.5. Variable frequency control
	CSI fed drive.	from a current source: (CSI),
	3g. Explain braking and multi-quadrant	regenerative braking and
	operation of CSI fed drive.	multi-quadrant operation,
		closed loop control of CSI
		drives.

Unit	Major Learning Outcomes	Topics and Sub-topics
Omt	(Major outcomes in cognitive domain)	
	 3h. Explain the working of cycloconverter fed drive with the help of sketches 3i. Explain the working of PWM inverter fed drive with the help of sketches. 	3.6. Cyclo-converter fed induction motor drive3.7. Pulse width modulated (PWM) inverter fed induction motor drive.
Unit – IV	4a. Explain concept of conventional rotor	4.1. Conventional rotor
Rotor-side	resistance control method.	resistance control
control of Drives	4b. Explain the working of static rotor resistance control of doubly fed induction generator (DFIG) with sketches.	4.2. static rotor resistance control of a DFIG
	 4c. Explain super synchronous speed control using DC link cascade and cyclo converter cascade. 4d. Explain the working of close loop control of static Scherbius drive using block diagram. 	4.3. Slip power recovery scheme: Conventional Scherbius drive system, static scherbius drive, super synchronous speed control using DC link cascade and cyclo converter cascade
Unit – V Synchronous motor drives	5a. Describe the working of load commutated inverter (LCI) fed synchronous motor drive with sketches.	5.1. Load commutated inverter (LCI) fed synchronous motor drive.5.2. Close loop control of LCI fed
	5b. Explain the working of close loop control of LCI fed synchronous motor drive using block diagram.	synchronous motor drive.
	5c. Describe the working of VSI fed synchronous motor drive using sketches.	5.3. VSI fed synchronous motor drive: separate control, self control.
	5d. Explain the working of cyclo converter fed synchronous motor drive using sketches.	5.4. Cyclo converter fed synchronous

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	AC Drive Fundamentals	10	4	8	0	12
II	Stator Voltage control drives	10	3	5	5	13
III	Rotor Frequency control drives	14	4	8	5	17
IV	Rotor side control of Drives	12	4	8	4	16
V	Synchronous motor drives	10	4	4	4	12
	Total	56	19	33	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical Exercises	Approx. Hrs.
	No.	(Major Outcomes in Psychomotor Domain)	Required
1	I	Test the performance of 1-∞ induction motor using AC voltage controller.	2
2	I	Test the performance of 3- Ø induction motor using AC voltage controller.	4
3	II	Test the performance of closed loop speed control of motor using stator voltage control.	2
4	III	Test the performance of 1- Ø Induction motor using VSI drive.	2
5	II	Test the performance of 3- Ø Induction motor using VSI drive.	4
6	III	Test the performance of 3- Ø Induction motor using closed loop VSI drive.	2
7	III	Test the performance of 1- Ø Induction motor using CSI drive.	2
8	III	Test the performance of 3- Ø Induction motor using CSI drive.	4
9	III	Test the performance of cyclo converter fed induction motor drive.	4
10	III	Test the performance of pulse width modulated inverter fed induction motor drive.	4
11	IV	Test the performance of super synchronous speed control of motor using DC link cascade and cyclo converter cascade scheme.	4
12	V	Test the performance of load commutated inverter (LCI) fed synchronous motor drive.	4
13	V	Test the performance of close loop control of LCI fed synchronous motor drive	2
14	V	Test the performance of cyclo converter fed synchronous motor drive.	2
	_	Total	42

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Search the internet and analyse the specifications for various types of AC drives
- ii. Find practical applications of AC drives in home appliances and have to list various parameters of those applications.
- iii. Make comparative table for various drives based on its application and maximum power ratings.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Give simple exercises during tutorial session and ask students to present their work and have discussions on that.
- ii. Use Flash/Animations to explain the working of different control devices and the characteristics of inputs and outputs of different devices.
- iii. Give Mini projects to students

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Books	Author	Publication/Year
1	Power semiconductor Drives	Sivanagaraju S., balasubba M. reddy and A. Mallikarjuna Prasad	PHI Learning, New Delhi,1 st edition, 2010 or latest
2	Modern Power Electronics and AC Drives	Bose,.Bimal K.	PHI Learning, New Delhi 2 nd edition, 2005 or latest
3	Power electronics	Dr. Bimbhra P. S.	Khanna Publishers, New Delhi 5 th edition, 2013 or latest
4	Power Electronics and Its Applications	Jain, alok	Penram International, 2 nd edition, 2011 or latest
5	Power Electronics: Circuits, Devices and Applications	Muhammad H. Rashid	Pearson (2003), New Delhi 3 rd edition or latest
6	Power Electronics	Singh, M.D., Khanchandani K.B.	Tata McGraw-Hill Education New Delhi (2006), 2 nd edition or latest
7	Power Electronics : Converters, Applications, and Design	Ned Mohan, Tore M. Undeland, William P. Robbins	Wiley India, New Delhi 3 rd edition 2007 or latest

B. List of Major Equipment/Materials

- i. Digital multi meter
- ii. Clamp-ON meter
- iii. Digital Oscilloscope
- iv. Power Oscilloscope
- v. Various Trainer boards for Converters
- vi. Any one simulation software

C. Learning Websites/ Software

- i. http://www.youtube.com/watch?v=MqbNoVTKdcM
- ii. http://freevideolectures.com/Course/2351/Power-Electronics
- iii. http://www.youtube.com/watch?v=dDp1ybbCQBM
- iv. http://www.scribd.com/doc/6883802/AdjustableSpeedDrivesTutorial
- v. http://brightelectricals.blogspot.in/2008/12/lecture-notes-on-power-electronics.html
- vi. http://en.wikipedia.org/wiki/Power_electronics
- vii. SEQUEL (open source)
- viii. PSIM
- ix. ORCAD

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. K. J. Dhimar**, HEAD, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat
- **Prof. S. A. Patel**, LPE, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. A.S.Walkey**, Associate Professor, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal.
- **Dr. Joshua Earnest**, Professor, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal.