GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: APPLIED POWER ELECTRONICS (COURSE CODE: 3352402)

Diploma Programme in which this course is offered	Semester in which offered
Power Electronics	5 th Semester

1. RATIONALE

With the advancement of technology application of Power electronics are increasing day by day. This course is intended to enable the students to understand the facts, concepts and principles of the advance applications of high frequency heating, resistance welding, ultrasonic and timers. This will enable him/her in designing, operating and maintaining electric circuits. These skills developed through this course will help the student to function confidently in his/her career. It is also aimed to expose students to some of the advanced techniques used in the modeling, analysis and design of modern power electronic systems.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

Operate and maintain industrial applications based on high frequency.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

- i. Test Solid state relay like time delay relay using SCR and UJT, DIAC and TRIAC
- ii. Test different industrial applications of Opto electronic devices.
- iii. Test different high frequency heating.
- iv. Apply various resistance welding techniques
- v. Describe properties, generation and applications of ultrasonic waves.

4. TEACHING AND EXAMINATION SCHEME

	Examination Scheme			Total Credits	Scheme	ching S	Tea	
Total Marks	Marks	Practical	Theory Marks		(L+T+P)	(In Hours)		
150	PA	ESE	PA	ESE	С	Р	Т	L
130	30	20	30	70	5	2	0	3

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAIL

Unit	Major Learning Outcomes	Topics and		
	(Major outcomes in cognitive domain)	Sub-topics		
Unit – I Relays and Timers	1a. Describe construction of solid state relays1b. Describe the working of solid state	1.1 Solid state relays, Merits of solid state relay over electromechanical relay		
	relay circuits 1c. State merits of solid state relay 1d. Explain working of time delay	1.2 time delay relay sequential		
	relay with its applications 1e. Explain working of sequential timer with its applications	1.2 time delay relay, sequential timer 1.3 Applications of IC 555, IC556		
Unit – II Industrial Applications of Opto-	2a. Explain the working of various photo electric devices such as LDR, photo cell, photo diode, photo transistor, LASCR	2.1. Photo electric devices: LDR, photo cell, photo diode, photo transistor, LASCR		
Electronic Devices	2b. Explain the working of Photo relay circuit using Opto-couplers	 2.2. Opto-couplers 2.3. Photo relay circuit 2.4. Opto-coupler-with photo diode, photo transistor, SCR driver, TRAIC driver, FET driver 		
Unit – III Industrial Heating	 3a. Explain working of induction heating 3b. Derive equation of depth of penetration 3c. Solve numerical problems related to induction heating 	 3.1.Induction heating: Principle of working, depth of penetration, factor effecting depth of penetration, characteristics, simple numerical problems 3.2.Merits and limitations of induction heating. 3.3.Applications of induction heating 		
	 3a. Explain the working of dielectric heating 3b. Solve simple numerical problems related to dielectric heating 3c. Compare major features of induction and dielectric heating 	3.5. Dielectric heating3.6. Equation for power density , numerical problems3.7. Comparison of induction and dielectric heating		
Unit – IV Resistance Welding Devices	 4a. Describe concept of resistance welding 4b. Describe the block diagram of resistance welding with the help of welding cycle 	4.1.resistance welding : concept, resistance welding cycle, working		
	4c. Describe working of different resistance welding methods	4.2. spot welding, projection welding, seam welding, butt welding		
	4d. Different between synchronous and non-synchronous control	4.3.synchronous and non- synchronous control		

Unit	Major Learning Outcomes	Topics and
	(Major outcomes in cognitive domain)	Sub-topics
	4e. Distinguish between AC and DC welding4f. Differentiate between single phase and three phase welding	4.4. AC welding: single phase and three phase welding4.5. DC welding
	4g. Describe the use of timer used in welding process	4.6.Sequence timer
	4h. Explain working of electronic line contactor4i. Explain working of heat control	 4.7.Electronic line contactor, its advantages over electro- mechanical line contactor 4.8.Heat control circuit
	circuit 4j. Describe the concept of Energy storage welding 4k. Compare the features of Capacitor type energy storage welding	4.9. Capacitor type energy storage welding system, inductor type energy storage welding system
	system and inductor type energy storage welding system	
Unit – V Ultrasonic Devices	5a. Describe concept of properties of Ultrasonic waves5b. Describe the production of Ultrasonic waves	5.1. Ultrasonic waves
	 5c. Explain the concept of piezo electric generation 5d. Describe the working of magnetostrictive generator circuit 	5.2. Piezo-electric generator, Magenetostrictive generator Circuit,
	 5e. Describe the working of various ultrasonic devices such as Ultrasonic flow measurement, Ultrasonic flow detector Ultrasonic welding, Ultrasonic cleaner and others 	5.3. Ultrasonic flow measurement, Ultrasonic welding, Ultrasonic cleaner, Ultrasonic flow detector,

Uni	Unit Title		Distribution of Theory Marks			
t		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Relays and Timers	8	2	2	8	12
II	Industrial Applications of	10 2	6	10	18	
	Opto-Electronic Devices	10	2	0	10	10
III	Industrial Heating	8	1	6	7	14
IV	Resistance Welding	12	1	7	10	18
	Devices	12	1	1	10	10
V	Ultrasonic Devices	4	2	2	4	10
	Total	42	8	23	39	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise	Approx. Hrs.
No.	No.	(Outcomes' in Psychomotor Domain)	Required
1.	Ι	Build /Test solid state relay using SCR & UJT for DC load	2
2.	Ι	Build/Test solid state relay using SCR & UJT for AC load	2
3.	Ι	Build /Test solid state relay using DIAC & TRIAC	2
4.	Ι	Build /Test timer circuit using IC 555	2
5.	II	Build /Test Light operated relay using LDR & Transistor	2
6.	II	Build/Test Light Interrupted relay using LDR &	2

S.	Unit	Practical/Exercise	Approx. Hrs.
No.	No.	(Outcomes' in Psychomotor Domain)	Required
		Transistor	
7.	II	Build /Test Light operated relay using LDR & IC 555	2
8.	II	Build /Test Liquid level controller	2
9.	II	Build /Test temperature control circuit	
10.	II	Build /Test delayed automatic power ON/OFF	
11.	III	Use induction heating for different applications 2	
12.	III	Use dielectric heating for different applications	2
13.	IV	Use of sequential weld control circuit	2
14	V	Use of Ultrasonic transmitter and receiver for different	2
14.	v	applications	2
Total			28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Students have to find practical applications of different circuits in home appliances and have to list various parameters of those applications.
- ii. Students are instructed to list various practical applications
- iii. Students are instructed to take any one applications

9. SPECIAL INSTRUCTIONAL STRATEGY (if Any)

- i. Arrange Expert Lectures especially from relevant industries.
- ii. Show animation/flash/videos for explaining different advance applications.
- iii. Give mini project related with industrial applications and house hold applications

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S.	Title of Books	Author	Publication/Year
No.			
1	Industrial electronics	Biswas S.N.	Dhanpat Rai and Co.(P) Ltd, New
1.			Delhi, Latest edition
2	Industrial electronics	Mithal G. K.	Khanna publisher, New Delhi,
Ζ.			Latest edition
	Industrial Electronics	Bhattacharya S. K	Tata McGraw-Hill Publishng Co.
3.	and Control	Chetterjee S.	Ltd. New Delhi, Latest edition,
			Eleventh reprint
4.	Industrial electronics	Kissell, Thomos	Printice hall of India, New Delhi,
		E.	3 rd edition

B. List of Major Equipment/Materials

- i. Digital multi meter
- ii. Digital Oscilloscope
- iii. Various Trainer boards

- iv. Various electronic components
- v. Any one simulation software

C. Learning Websites/ List of Software

- i. http://freevideolectures.com/Course/2351/Power-Electronics
- ii. http://www.electronics-tutorials.ws/
- iii. http://educypedia.karadimov.info/electronics/electronicaopening.htm
- iv. http://en.wikipedia.org/wiki/Power_electronics
- v. PSIM
- vi. ORCAD

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>Faculty Members from Polytechnics</u>

- Smt. J.M. Patel, ALPE, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat
- **Prof. S. A. Patel**, LPE, Dept. of Power Electronics, Dr. S. & S. S. Ghandhy College of Engg. and Technology, Surat

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. A. S. Walkey, Associate Professor, Dept. of Electrical & Electronics Engg,
- Dr. Joshua Earnest, Professor, Dept. of Electrical & Electronics Engg,