GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: FABRICATION DESIGN (COURSE CODE: 3355501)

Diploma Programme in which this course is offered	Semester in which offered
Fabrication Technology	5 th Semester

1. RATIONALE

Fabrication is one of the major manufacturing processes which is extensively used in producing process equipments, steel structures and piping projects. This course develops capability to interpret and draft fabrication design drawings using basic knowledge and skill attained through this course. The students will be able to apply this knowledge and skill in their real life application throughout their carrier in the world of work.

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Design simple machine parts such as riveted joints, welded joints, pressure vessels and steel structures.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Explain general considerations in machine design
- ii. Determine different types of stresses in different load conditions in simple machine parts.
- iii. Design simple riveted jointed
- iv. Design simple welded joints
- v. Design simple steel structures.
- vi. Explain basic considerations in process equipment design
- vii. Design simple steel structures

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Exam	ination S	Scheme		
(In Hours)		(L+T+P)	Theory Marks			ctical arks	Total Marks	
L	T	P	C	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	

5. COURSE CONTENT DETAIL

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit-I	1a Describe general design	INTRODUCTION TO MACHINE
Introduction to	consideration in machine	DESIGN:
Machine Design	design	1.1 Definition
widemine Design	1b Convert fundamental unit	1.2 Classification of machine design
	in various system	1.3 General considerations in machine
	1c Classify machine design	design
		1.4 General procedure in machine
		design
		1.5 Fundamental units & its
		conversion
Unit -II	2a. Calculate stress & strain	SIMPLE STRESSES IN MACHINE
Simple Stresses	for given job	PARTS / PROCESS EQUIPMENT:
in Machine	2b. State the factors of safety	2.1Load, Stress, Strain
Parts / Process	and its selection criteria	2.2Tensile, compressive & shear stress & strain
Equipment	2c. State the relation between -	2.3Young's modulus
	bulk modulus and young's modulus, young's modulus	2.4Shear modulus
	and modulus of rigidity in	2.5Bearing stress
	thermal stress	2.6Stress strain diagram
	2d. Explain application of	2.7Working stress
	principle stress in	2.8Factor of safety and its selection
	designing of machine	criteria
	parts.	2.9Thermal stress
	2e. Explain effect of different	2.10 Linear and lateral strain
	factors on endurance limit.	2.11 Poisson's ratio
	2f. Explain meaning of stress	2.12 Volumetric strain
	concentration and describe	2.13 Bulk modulus
	methods to reduce it.	2.14 Relation between bulk modulus
	2g. Describe importance of	and young's modulus
	factor of safety and its	2.15 Relation between young's
	selection criteria.	modulus and modulus of rigidity
		2.16 Impact stress
		2.17 Resilience 2.18 Torsional shear stress
		2.19 Bending stress2.20 Principal stress and principal
		plane
		2.21 Application of principal stress in
		designing machine members
		2.22 Cyclic stresses
		2.23 Fatigue and endurance limit
		2.24 Effect of different factors on
		endurance limit
		2.25 Stress concentration & methods
		of reducing stress concentration
		2.26 Notch sensitivity
		2.27

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit-III Design of Riveted Joints	 3a. Calculate strength and efficiency of various types of riveted joint 3b. State Essential qualities of rivet 3c. State types of rivets and riveted joint 3d. Explain failures of a riveted joint 3e. Design simple riveted joints. 	 DESIGN OF RIVETED JOINTS: 3.1 Introduction & methods of riveting 3.2 Material of rivet 3.3 Essential qualities of rivet 3.4 Types of rivets 3.5 Types of riveted joint 3.6 Important terms used in riveted joint 3.7 Failures of a riveted joint 3.8 Strength of riveted joint 3.9 Efficiency of riveted joint 3.10 Riveted joint for structural use – joint of uniform strength
Unit-IV Design of Welded Joints	4a.Calculate strength of various types of welded joint 4b. Compare riveted joints with welded joints 4c. Design axially loaded unsymmetrical welded section	(Lozenge joint) DESIGN OF WELDED JOINTS: 4.1Introduction 4.2Advantages and disadvantages of welded joint over riveted joint 4.3Types of welded joint 4.4Strength of transverse fillet welded joint 4.5 Strength of parallel fillet welded joint 4.6 Special cases of fillet welded joint 4.7 Strength of butt welded joint 4.8 Stresses for welded joint 4.9 Stress concentration factor for welded joint 4.10 Axially loaded unsymmetrical welded sections
Unit-V Basic Consideration in Process Equipment Design	 5a. Calculate thickness of pressure vessel shell as per ASME sec VIII div 1 5b. Calculate thickness of various types of dished end as per ASME Sec VIII Div-1 5c. Describe failure in pressure vessel 5d. Describe design consideration of various parts of pressure vessel 5e. Design simple pressure vessels for given requirement. 	BASIC CONSIDERATION IN PROCESS EQUIPMENT DESIGN 5.1 Design codes 5.2 Factors affecting process equipment design 5.3 Maximum working pressure 5.4 Design pressure 5.5 Design temperature 5.6 Design stress & factor of safety 5.7 Corrosion allowance 5.8 Weld joint efficiency factor 5.9 Design loadings 5.10 Stress concentration 5.11 Thermal stress 5.12 Criteria of failure 5.13 Failures in pressure vessel 5.14 Cylindrical shell design 5.15 Design of heads & closures 5.16 Compensation for opening in

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
		process equipment
		5.17 Types & design criteria of flange
		5.18 Gasket & its selection
		5.19 Design consideration & types of
		support for pressure vessel
Unit-VI	6a. Describe design	DESIGN OF STRUCTURE:
Design Of	consideration of different	6.1 Factors governing structural layout
Structure	types of structure	6.2 Structural design
	6b. Calculate SF & BM	6.3 Steps in design
	diagram for cantilever and	6.4 Load analysis
	simply supported beam for	6.5 Minimum thickness
	point load and uniformly	6.6 Plans and drawings
	distributed load	6.7 Design considerations
	6c. Draw bending moment	6.8 Methods of structural design
	and shear force diagrams	6.9 Simple design
	for given load conditions.	6.10 Semi-rigid design
	6d. Design simple steel	6.11 Fully rigid design
	bridges, transmission line	6.12 Experimentally based design
	towers and roof trusses for	6.13 Slenderness ratio
	given requirement	6.14 Corrosion protection
		6.15 Increase of stresses
		6.16 Fluctuation of stresses
		6.17 Resistance to horizontal forces
		6.18 Stability of the structure
		6.19 Industrial building
		6.20 Steel Bridges
		6.21 Web stiffeners & its types
		6.22 Roof trusses
		6.23 Transmission line tower
		6.24 Bending moment & shear force
		diagram
		6.25 Cantilever beam with point load
		at end
		6.26 Cantilever beam with uniformly
		distributed load
		6.27 Simply supported beam with
		point load at mid point
		6.28 Simply supported beam with
		uniformly distributed load

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

			Distribution of Theory Mark			Marks
Unit	Unit Title	Teaching	R	U	A	Total
No.		Hours	Level	Level	Level	
I	Introduction to Machine Design	6	3	4	0	07
II	Simple Stresses in Machine Parts /	18	8	7	8	23
	Process Equipment					
III	Design of Riveted Joints	6	0	4	4	08
IV	Design of Welded Joints	6	0	4	4	08
V	Basic Consideration in Process Equipment Design	12	4	6	4	14
VI	Design of Structure	8	0	4	6	10
_	Total 56 15 29 26 70					

 $\textbf{Legends:} \ \ \textbf{R} = \text{Remember;} \ \textbf{U} = \text{Understand;} \ \textbf{A} = \text{Apply and above levels (Bloom's Revised taxonomy)}$

NOTE:-

Suggested specification table shall be treated as only general guidance for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISE/PRACTICAL/EXPERIMENTS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes mainly in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes

S. No.	Unit No.	Practical Exercises (Outcomes in cognitive and psychomotor domain)	Approx Hours
1	5	Interpret process equipment drawing.	2
2	5	Draw process equipment drawing on AutoCAD – 2D.	2
3	2	Calculate stress & strain for given load and job conditions. 2	
4	3	Design simple riveted joints.	2
5	4	Design simple welded joint. 2	
6	5	Interpret ASME Sec – VIII div-1.	2
7	5	Interpret Design consideration of pressure vessel as per ASME Sec-VIII- Div -1	4

Gujarat State

GTU/NITTTR/Bhopal/14-15

8	6	Interpret Design consideration of Industrial Shade.	2
9	6	Interpret Design consideration of Transmission Line Tower 2	
10	6	Interpret Design consideration of Industrial building 2	
11	6	Interpret Design consideration of Roof struts 2	
12	6	Interpret Design consideration of Steel bridge	2
13	6	Draw S.F & B.M diagram for cantilever & simple supported	2
15 0		beam and calculate the SF and BM.	
		Total	28

8. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Solve as many examples as possible from different books.
- ii. Prepare drawing of different designs and maintain the design book

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Give as many design/numerical problems to students as possible and help them whenever they are stuck.
- ii. Identify students in three groups namely below average, average and bright students and give the problems according to their ability. This would give students a challenge which they can overcome and would also create interest in solving problems. This would also help in reduction of incidences of copying.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Title of Books	Author	Publication
1	A text book of machine design	R. S. Khurmi J. K Gupta	Euresia Publishing House (Pvt.) Ltd.
2	Pressure Vessel Design manual	Deniss Moss	Gulf professional publishing
3	Design and Analysis of Steel structures	V.N.Vazirani M.M.Ratwani Honey Mehra	Khanna Publishers
4	Chemical equipment design	B.C.Bhattacharya	CBS Publishers & Distributers
5	Process Equipment Design	V.V.Mahajani S. B. Umreji	Macmillan Publication
6	Pressure vessel design – Guide & procedure	Mr. Ghader Ghanbari Mr. Mohammad Ali Liaghat	
7	Strength of material	R.S.Khurmi	S.Cchand & Company (Pvt.) ltd

B. List of Major Equipment/Instrument

i. Computer Systems

C. List of Software/Learning Websites

- i. Microsoft excel
- ii. AutoCAD
- iii. ProE
- iv. Catia V

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. P. B. Pathak**, I/C HOD, Deptt. of Fabrication Technology, Sir B.P.I., Bhavnagar
- **Prof. B. K. Gandhi,** Sr. Lecturer, Deptt. of Fabrication Technology, Sir B.P.I., Bhavnagar
- **Prof. S. Y .Merchant**, Sr. Lecturer, Deptt. of Fabrication Technology, Sir B.P.I., Bhavnagar

Co-coordinator and Faculty Members from NITTTR Bhopal

- Dr. A. K. Sarathe, Associate Professor Deptt. of Mechanical Engineering,
- Dr. C. K. Chugh, Professor Deptt. of Mechanical Engineering,