
Slicing of SOA-based Software and its
Application to Testing

A Ph.D Synopsis
Submitted to

Gujarat Technological University, Chandkheda
For the Award of Ph.D Degree in

Computer Engineering

Kaushikkumar Keshavlal Rana
Enrollment No: 119997107010

Under supervision of

Prof. Durga Prasad Mohapatra
Department of Computer Science & Engineering, NIT Rourkela.

Co-Supervisor: Prof. Arun K. Somani, Iowa State University, IA 50011.

mailto:kkr@vgecg.ac.in
mailto:kkr@vgecg.ac.in
durga@nitrkl.ac.in
durga@nitrkl.ac.in

ii

Abstract

This Ph.D synopsis presents our work concerning slicing of SOA-based soft-
ware and its application to testing. We first devise a technique for static slicing
of SOA-based software based on SoaML service interface diagram. In this tech-
nique, we first design a model using SoaML service interface diagram. Then,
we create an intermediate representation, called Service Interface Dependency

Graph (SIDG) from the model that we created. The SIDG identifies service
call dependency and composite dependency from SoaML model. Giving slic-
ing criterion as an input, our proposed algorithm SSSIM traverses the SIDG and
identifies the affected service interface nodes.

Next, we extend our intermediate representation (SIDG) to be able to compute
dynamic slices based on SoaML sequence diagram. In our technique, we first
map each message in sequence diagram with the corresponding web service
input and output messages. This mapping is static. After that, we construct
an intermediate representation of SoaML sequence diagram which we said as
Service-Oriented Software Dependence Graph (SOSDG), which is an interme-
diate representation that needs to be stored and traversed to get a dynamic slice
as and when web service gets executed. The SOSDG identifies data, control,
intra-service and inter-service dependencies from SoaML sequence diagram and
corresponding web service execution. For a given slicing criterion, our proposed
algorithm MBGDS computes global dynamic slice from SOSDG and identifies
the affected messages from respective services. The novelty of our work lies in
the computation of global dynamic slice based on SOSDG and its dependencies
induced within and across organizations.

To support the testing of SOA-based software at development phase, we pro-
pose an extension to WSDL for carrying out black-box testing. In this context,
we apply program slicing artifact i.e dependence graph for testing SOA-based
software. In this approach, we impose a hierarchical structure on Web Service
Description Language (WSDL) document. The extension to WSDL is carried
out by introducing Web Service Dependence Graph (WSDG) and dependencies
both data and control in XSD (XML Schema Definition) document. This WSDG

identifies both data and control dependencies from WSDG.

Next, we presented two techniques to test SOA-based software using BPMN 2.0
diagram and SoaML service interface diagram. To test it using BPMN diagram,
first we convert BPMN diagram into its Control Flow Graph (CFG) using our
proposed algorithm. Then, we use Depth First Search (DFS) method to gen-
erate the test paths. Finally, we execute test cases on the generated test paths.
The second technique of testing uses SoaML service interface diagram to model
SOA-based software. Next, we generate XML Schema and its instance using Vi-
sual Paradigm Enterprise tool. At last, we apply test cases based on the schema
constraints to test it.

Additionally, we represented a new approach for white-box testing of web ser-
vices assuming the developer wants to increase the quality of web services and
have released service code. In this approach, we create an intermediate rep-
resentation, called Service Dependence Graph (SDG) by merging the Service

Client Dependence Graph (SCDG) of web service client code and Web Service

Dependence Graph (WSDG) of web service code. The SDG identifies data de-

pendency, control dependency, and novel dependency that arise at runtime which
we named callee dependency. Giving slicing criterion as an input, our proposed
algorithm, MBDSWS computes dynamic slice from SDG and identifies the af-
fected statements in both service client and service code. Finally, we execute
various test cases using the MBDSWS.

Finally, for all the above techniques/approaches we have developed prototype
tools to experimentally verify the correctness and preciseness of our proposed al-
gorithms or techniques. The computed slices and generated test cases for several
models or web services were found to be correct using both, manual procedure
and our prototype tools.

CONTENTS

Contents

1 Introduction 1

2 Motivation 3

3 Objectives 4

4 Scope of Our Work 5

5 Original Contribution by the Thesis 5

6 Work Done 6
6.1 Work-1: Static Slicing of Service-Oriented Software (SOS) 6
6.2 Work-2: Dynamic Slicing of Service-Oriented Software (SOS) 7
6.3 Work-3: Black-box Testing of Service-Oriented Software (SOS) 10
6.4 Work-4: Model-based Testing of Service-Oriented Software (SOS) 10
6.5 Work-5: White-box Testing of Service-Oriented Software (SOS) 16

7 Conclusion 16

Bibliography 18

v

1 Introduction

Service-Oriented Architecture (SOA) is an architecture for defining how people or machines,
business organizations and systems provides and use services to achieve results. Service-
Oriented Architecture (SOA) has come out as one of the leading solutions for such business
applications.

As more and more business organizations are adopting SOA, and the needs of the busi-
ness strategies demands rapid delivery and realignment of business services, an organization
may overlook the quality aspect of SOA services and may inadvertently introduce errors.
It is very important for defect free delivery of SOA based software and their mapping to
business requirements. Therefore, an organization must test such applications to ensure high
quality SOA solutions and hence ensuring business customers.

Many researchers have given their significant contribution in the field of testing SOA
application. In this section we are going to discuss their work. The importance of this topic
can be best judge by market prediction reports generated by leading prediction companies.
Among them Gartner Incorporation, a leading trend prediction company, was the first one to
coin the term ”SOA” and had published in 1996 [25]. It also reports that SOA will be used
in more than 50% of new mission-critical operational application and business processes,
designed in 2007, and more than 80% by 2010, with success of implementation depending
on managing the key challenges faced in testing, debugging. managing and securing, a
distributed SOA application.

Another leader, the International Data Corporation (IDC), predicts that the global spent
on service oriented software in 2006 was nearly $2 billion , will also rise to $14 billion in
2011[13]. Of course, there are failure reports for example SOA system failure at Heathrow
Airports $ 8.6 Billion Terminal 5 Caused 1.6 British Pounds of losses in one week [20],
which illustrate the importance of SOA testing.

Gold et al. [22] have briefly analyzed the comprehension scenario in SaaS (Software as a
Service) by using a fictional translation service. They also discuss various failures in under-
standing software, changes and their potential solutions in the context of translation service.
They are focused on understanding service failure and how can Alice cope with it rather than
finding the errors. Ribarov et al. [18] have discussed the challenges and problem in testing
SOA application from micro (object) to macro (service) level. They analyzed testing SOA
from the perspective of traditional testing techniques and suggested various solutions. Since
SOA is new complex problem tester need novel techniques beyond application of traditional
techniques or required new specialized tools.

Hattangadi [10] have discussed SOA testing challenges, tool requirement, change in
methodology, and end to end business process testing etc. He proposed 4-step testing ap-
proach starting from service, process, end to end and regression testing. His approaches

1

will never serve as novel information or techniques for SOA testing, it will serve as a hand-
book or guide. [26] have practically depicted the black, white and gray box testing on SOA
web service along with their advantages and disadvantages. In general, the work tells about
unit testing of web service lacking of composite and integration testing technique. Morris
et al. [8] have analyzed and reports SOA testing challenges , functionality testing, interop-
erability testing security testing, quality attribute testing and standards conformance testing
thoroughly.

Tsai et al. [35] have discussed service testability considering 4 levels as source code,
binary code, model and signature. Also they discussed testability of atomic service, data
provenance, service integration and service collaboration with a case study. But the services
never expose its source code disabling the white box testing. Harris [30] have discussed in
detail SOA testing process. He discuss suitability of V-model, revised testing approach and
SOA specific testing techniques along with the applicability of traditional testing. Bartolini
et al. [5] have proposed SOCT (Service Oriented Coverage Testing) approach consisting
service instrumentation, execution, storing log information and retrieval of coverage reports.
It consist 3 main components service provider (Testable service), service integrator (SOCT
tester) and coverage service provider (Tcov). The SOCT tester calls Testable service, then
the SOCT tester receives unique session id (SID). The testable service collects coverage
information by calling Tcov. The major flow in this work is the assumption of static binding
between SOCT tester and testable service, and service code availability, which may not
possible in real SOA.

Inaganti et al. [27] have presented SOA specific testing techniques like service agility
testing, BPEL level-1 and level-2 testing, security testing, service design testing and SOA
performance testing. They also discuss the SOA road-map process for organizations to be-
come capable of SOA. Dustdar et al. [24] have presented automate testing of SOA through
SITT(Service Integration Test Tool), a prototype implementation. They also cover a real
world telecom domain example of mobile number portability. It consist 2 phases, in 1st
phase, involved web service writes a XML structured log file which is read by TA(Testing
Agent) and is sent to MA(Master Agent) via socket interface. In 2nd phase the MA sends
back the configuration for TA which is being acknowledged by respective TA. Their work
focuses on testing services and workflows by message flow analysis.

Canfora et al. [11] discusses the SOA testability challenges, role of testing and monitor-
ing with image transformation example. In their example they derived 6 equivalence class for
SLA constraint (cost 35 $, image= img1.bmp, posterize=true, sharpen=5) and analyzed w.r.t
interoperability, run time binding, QoS (Quality of Service) etc. Canfora et al. [12] discuss
SOA testing across two dimensions: testing perspectives (service provider, service integra-
tor, third-party certifier, user) and testing level (service functional, service nonfunctional,
integration, regression testing).

2

Teeseling et al. [2] have created a simulation of a business process for a Dutch health
law called WMO using WS-BPEL. His work totally focused on simulation SOA with the
help of WS-BPEL. Palacios et al. [19] have tabularize their effort on various journal, con-
ferences, workshop, quality assessment questions, data extraction , primary studies, testing
objective, distribution of study based on stockholder and in time, technology/standard, val-
idation method , year and source etc. In short, they have exclusively carried out survey in
tabular representation.

Linthicum et al. [6] have created and defined SOA test plan, testing domain, architec-
tural objectives, design review and test planning, functional test approach, performance re-
quirements, SLA requirements, data layer testing, service layer testing, policy layer testing,
process layer testing, service simulation, core scenarios, user defined compliance rules, SOA
testing technology suite, testing execution, looping back to design and development, diag-
nostics for design-time and runtime, SOA testing debriefs, operational test planning approach
etc. These strategies will help practitioner SOA tester to test SOA thoroughly.

Seth et al. [1] have evaluated SOA systems with various size metrics like function point,
COCOMO II, and SMAT-AUS framework etc. [29] discusses SOA challenges like visibil-
ity, vulnerabilities, quality, lifecycle, impact of changes w.r.t SOA testing. They presented
HP quality management solutions like Mercury Virtual User generator, HP load runner, HP
QuickTest Professional etc. Davidson [21] have analyzed the Lufthansa cargo case in which
Parasoft SOAtest reduces regression testing effort by at 20% than manual testing.[31] reports
that Cognizants WSTest Professional, a GUI testing tool for SOA, reduces 40% test script
design and 35% were reused test scripts.

2 Motivation

SOA has started gaining importance in this competitive world of business and cloud-based
applications. Though, there were predictions about SOA to die out. But, research community
along with IT vendors have started substantially contributing to the fast adoption of SOA in
the business world.

Between 2005 and 2007, multiple surveys were conducted by organizations such as For-
rester, Gartner, and IDC that showed that the top drivers for SOA adoption were mainly inter-
nally focused: these top drivers generally included application integration, data integration,
and internal process improvement. This is changing. Forrester [9] shows that the number of
organizations currently using SOA for external integration is approximately one third of the
surveyed organization. While the percentage of externally focused SOA applications is still a
minority, this percentage has been growing and the trend will continue as organizations look
at SOA adoption for supply-chain integration, access to real-time data, and cost reduction
through the use of third-party services via the cloud or Software-as-a-Service (SaaS).

3

All major IT vendors, a few names, such as IBM, Tibco, Software AG, Sun Oracle,
SAP and so on have made huge investments into SOA in recent years, making up a global
estimated budget of $2 billion in 2007, which is further expected to rise and reach $9.1
billion by 2014 [13]. Even, corporate giants like Microsoft, IBM, Sun Oracle, SAP, Infosys
have already proposed their own SOA solutions and related software products. The current
year 2016 is a big boost for SOA as many e-commerce companies adopted SOA for their
business processes. This has helped immensely to improve agility and business integration.
This also gives an indication that we need more reliable SOA-based systems and their testing
is inevitable.

Our observation made us notice that there is a pressing necessity to devise a testing
approach for SOA-based software. We also notice that testing approaches have been changed
from traditional applications to object-oriented applications and must be changed for SOA-
based software too. With this motivation for developing techniques for testing SOA-based
software, in the next section, we identify the major objectives of our work.

3 Objectives

The main goal of our research work is to test SOA-based software through program slicing
technique during design, testing and maintenance phases of software development lifecycle.
To address this broad objective, we identify the following goals:

1. We first wish to compute static slice of SOA software based on SoaML models:

• Designing suitable intermediate representation.

• Static slicing algorithm based on proposed intermediate representation.

2. We wish to extend this approach for computing dynamic slices of SOA-based software.

3. Next, we aim to test web services using WSDL.

4. Then, we aim to propose an approach/technique to test SOA-based software using
BPMN and SoaML models.

5. At last, we aim to test web services using its code.

6. In addition to investigating our slicing algorithms/techniques/approaches theoretically,
we wish to implement all the proposed algorithms/techniques/approaches experimen-
tally for verifying their performance, correctness, and preciseness.

7. Finally, we plan to carry out an analysis of our experimental studies to draw broad
conclusions about realized work for time and space requirements.

4

4 Scope of Our Work

We unanimously decided the scope of our work as to be limited up to Service-Oriented Ar-
chitecture (SOA) based software testing. It includes which aspects of SOA should be tested
(Specification/Model/Code), the elements to be tested (web service, Web Service Description
Language (WSDL), XML Schema (XSD), Universal Description Discovery and Integration
(UDDI), Simple Object Access Protocol (SOAP)) and other XML artifacts produced during
the testing effort. Also, it includes testing strategies for the unit, integration, and systems-
level testing of SOA web services.

This means that instead of covering small pieces of testing SOA software development
process, we preferred to advance as far as possible on slicing and testing SOA-based software
with the aim of being able to present convincing solutions to the SOA testing challenges.
Without a doubt, slicing and testing SOA-based software are complex problems as well and
deserve to be investigated intensively, which has been done in the scope of our work.

5 Original Contribution by the Thesis

In our work, we have made progress in the field of testing SOA-based software. We have
developed novel techniques for solving the previously listed challenges and implemented
software prototypes to prove the applicability of our concepts. The most significant contri-
butions and achievements of this thesis are:

• A simple yet powerful technique for slicing SOA-based software, based on models and
seems to be intuitive for tester.

• Approaches for testing SOA-based software, that is based on WSDL which provides
business flexibility.

• Techniques for testing SOA-based software based on models.

• Techniques to perform regression testing on an SOA-based software.

Moreover, we have published the software prototype as open-source, as a contribution to the
research community.

The presentation of novel concepts always requires an evaluation in order to prove their
applicability, usefulness, and correctness. Depending on the type of concepts, different types
of evaluation make sense to be applied. For this work, however, the evaluation was not
trivial. We have performed a comparative evaluation, by matching our approach to other
available ones, in order to prove applicability our proposed concepts. This is mainly due
to the novelty of our work and the lack of direct competitors. Also, we have not done a
precise performance evaluation, as our contribution is not about performance issues nor does

5

it prove the quality of our approach in any case. It would merely assess the applicability of
our prototype implementation, which is primary importance being a proof of concept.

Without a doubt, a real-world evaluation, where our concepts and prototypes are applied
in real SOA development projects would make the most sense and give valuable insights
into how much the testing process got improved by our contribution. Unfortunately, this was
not possible as (i) we did not have access to test a significant number of real-world SOA
projects and (ii) it would have been not easy to convince the testers to apply our prototype
implementation.

Instead, we evaluated our concepts in a selective manner, choosing what we regarded
as reasonable and realizable case studies. For instance, we included a test case generation
technique which deals with generating test cases at design time from SoaML service interface
diagrams. In contrast to that, we tested SOA-based software at the run-time, which has a
significant effect on test results. Moreover, we applied our approach to several standardized
case study examples for an internal assessment and as a proof of usability of the prototype
implementation. Our contributions and achievements can be judged by next Section.

6 Work Done

The system configuration used to run SSSIM, MBGDS, extended WSDL, BPMN/SoaML
Models and MBDSWS algorithms is Windows 7 Professional service pack 1, Intel(R) Core(TM)
i3-3240 CPU@ 3.40GHz running at 3.40 GHz, with 4.00 GB RAM. All measured times re-
ported in this section are overall times, including parsing and building of corresponding
intermediate representations, building and deploying extended WSDL etc.

6.1 Work-1: Static Slicing of Service-Oriented Software (SOS)

We devise a technique for static slicing of SOA-based software based on SoaML service in-
terface diagram. In this technique, we first design a model using SoaML service interface di-
agram. Then, we create an intermediate representation, called Service Interface Dependency

Graph (SIDG) from the model that we created. The SIDG identifies service call dependency
and composite dependency from SoaML model. Giving slicing criterion as an input, our
proposed algorithm SSSIM traverses the SIDG and identifies the affected service interface
nodes.

We have tested the working of SSSIM algorithm using case study examples as stated in
[23] with a service call and composite dependencies using SIDG. We studied the run-time
requirements of our SSSIM algorithm for these case studies and for several runs. Table 1
summarizes the average run-time and memory space requirements of SSSIM algorithm. As
we are not aware of the existence of any algorithm for dynamic slicing of service-oriented
programs, so we have not presented any comparative results. We have presented only the

6

results obtained from our experiments. Since we computed the dynamic slices at different
service interface nodes of a service interface diagram, we have calculated the average run-
time requirements of the SSSIM algorithm. The performance results of our implementation
agree with the theoretical analysis. From the experimental results, it can be observed that
the average run-time increases sublinearly as the no. of service interface nodes increases in
a service interface diagram.

Most of the reported work are not directly comparable to our work as they are focused
on applying traditional testing techniques, methods, architecture, extension to SOA etc. The
only comparable work is of Lallchandani et al. [14, 15]. With respect to asymptotic analysis
both perform equally. Lallchandani et al. [14, 15] have merged class diagram and sequence
diagram in order to get better information of the system, while we used SoaML service
interface diagram. From the implementation perspective, Lallchandani et al. [14, 15] used
DOM (Document Object Model) parser, while we used XSLT parser.

6.2 Work-2: Dynamic Slicing of Service-Oriented Software (SOS)

In our technique, we first map each message in sequence diagram with the corresponding
web service input and output messages. This mapping is static. After that, we construct an
intermediate representation of SoaML sequence diagram which we said as Service-Oriented

Software Dependence Graph (SOSDG), which is an intermediate representation that needs
to be stored and traversed to get a dynamic slice as and when web service gets executed. The
SOSDG identifies data, control, intra-service and inter-service dependencies from SoaML
sequence diagram and corresponding web service execution. For a given slicing criterion, our
proposed algorithm MBGDS computes global dynamic slice from SOSDG and identifies the
affected messages from respective services. The novelty of our work lies in the computation
of global dynamic slice based on SOSDG and its dependencies induced within and across
organizations.

We have tested the working of MBGDS algorithm using case study examples as stated
in [23] with inter-service and intra-service dependencies using SOSDG. We studied the run-
time requirements of our MBGDS algorithm for these case studies and for several runs.
Table 2 summarizes the average run-time requirements of MBGDS algorithm. As we are
not aware of existence of any algorithm for dynamic slicing of service-oriented programs, so
we have not presented any comparative results. We have presented only the results obtained
from our experiments. Since, we computed the dynamic slices at different messages of a
services, we have calculated the average run-time requirements of the MBGDS algorithm.
The performance results of our implementation agree with the theoretical analysis. From the
experimental results, it can be observed that the average run-time increases sublinearly as
the no. of service increases in a service choreography.

7

Table 1: Average run-time and memory space requirements of SSSIM algorithm

Sl. No. Benchmark Model # Nodes Slicing Criterion Avg. Run-Time Memory
Space

[SI(n)] (in Sec) (in
KB)

1 Online Shopping System
(OSS) [our case study
example]

13 Consumer 105 6.9

2 Hotel Automation Software
(HAS)

9 Consumer 100 6.8

3 Medicine Shop Automation
Software (MSAS)

9 Provider 101 6.9

4 Bookshop Automation Soft-
ware (BAS)

8 Consumer 101 6.8

5 Road Repair and Tracking
System (RRTS)

8 Provider 100 6.8

6 Restaurant Automation Sys-
tem (RAS)

8 Consumer 102 6.9

7 Student’s Auditorium Man-
agement Software (SAMS)

8 Provider 100 6.8

8 Library Information System
(LIS)

8 Consumer 100 6.8

9 Software Component Cata-
loguing Software (SCCS)

7 Consumer 100 6.8

10 Supermarket Automation
Software (SAS)

7 Consumer 100 6.9

11 Judiciary Information System
(JIS)

6 Consumer 70 6.5

12 Municipality Garbage Col-
lection Automation Software
(MGCAS)

5 Consumer 50 6.5

13 Motor Parts Shop Software
(MPSS)

4 Consumer 40 6.3

14 Railway Reservation Soft-
ware (RRS)

4 Provider 40 6.3

15 House Rental Software
(HRS)

3 Provider 30 6.2

8

Table 2: Average run-time of MBGDS algorithm

Sl. No. Name of Case-Study XMI # Services #LOC Average
(#LOT) Run-

Time
(in
Sec)

1 Online Shopping System (OSS)
[our case study example]

15708 11 2145 37.45

2 Hotel Automation Software (HAS) 5712 4 795 14.04
3 Bookshop Automation Software

(BAS)
9150 6 1189 21.06

4 Road Repair and Tracking System
(RRTS)

5812 4 810 13.10

5 Restaurant Automation System
(RAS)

5789 5 986 12.22

6 Judiciary Information System (JIS) 5101 4 790 12.11
7 Library Information System (LIS) 9240 6 1190 20.09
8 Software Component Cataloguing

Software (SCCS)
5400 3 589 13.87

9 Supermarket Automation Software
(SAS)

5119 4 789 14.78

10 Motor Parts Shop Software (MPSS) 5139 3 580 12.45
11 Student’s Auditorium Management

Software (SAMS)
5333 5 988 13.89

12 Medicine Shop Automation Soft-
ware (MSAS)

5219 4 794 14.12

13 Railway Reservation Software
(RRS)

5318 4 809 14.09

14 Municipality Garbage Collection
Automation Software (MGCAS)

5278 5 989 13.18

15 House Rental Software (HRS) 2411 2 397 13.18

9

To our best of knowledge, no algorithm for dynamic slicing of service-oriented software
has been proposed so far. We, therefore, compare the performance of our algorithm with
the existing algorithms for static or dynamic slicing of models/languages. A comparison
between the related work is presented in Table 3.

6.3 Work-3: Black-box Testing of Service-Oriented Software (SOS)

We propose an extension to WSDL for carrying out black-box testing. In this context, we
apply program slicing artifact i.e dependence graph for testing SOA-based software. In this
approach, we impose a hierarchical structure on Web Service Description Language (WSDL)
document. The extension to WSDL is carried out by introducing Web Service Dependence

Graph (WSDG) and dependencies both data and control in XSD (XML Schema Definition)
document. This WSDG identifies both data and control dependencies from WSDG.

We have tested working of our proposed approach using sample WSDLs stated in [37]
with structural dependencies incorporated in WSDL. We studied the run-time requirements
of our approach for these WSDL data sets and for several runs. Table 4 summarizes the
average run-time requirements of it. As we are not aware of the existence of any algorithm
for WSDL-based testing, we have not presented any comparative results. We have presented
only the results obtained from our experiments. Since we black-box tested different WS-
DLs using their respective consumer programs, we have calculated the average run-time
requirements of it. The performance results of our implementation are correct and satisfac-
tory. From the experimental results, it can be observed that the average run-time increases
sublinearly as the no. of statement elements increase in an extended WSDL.

A comparison between the related work is presented in Table 5. We compare the perfor-
mance of our approach with the existing approaches, techniques or frameworks for WSDL-
based testing.

6.4 Work-4: Model-based Testing of Service-Oriented Software (SOS)

we presented two techniques to test SOA-based software using BPMN 2.0 diagram and
SoaML service interface diagram. To test it using BPMN diagram, first we convert BPMN
diagram into its Control Flow Graph (CFG) using our proposed algorithm. Then, we use
Depth First Search (DFS) method to generate the test paths. Finally, we execute test cases
on the generated test paths. The test cases along with its status is shown in Table 6. In
the second technique of testing uses SoaML service interface diagram to model SOA-based
software. We generate XML Schema and its instance using Visual Paradigm Enterprise tool.
At last, we apply test cases based on the schema constraints to test it. Some of the valid
and invalid test cases, which we have obtained for our case study OSS, are given below in
Table 7.

10

Table 3: Comparison with related work

Sl. No. Related Work Model/ Slicing Slice Type Slice
Language Entities Output

1 Zhao [16] Wright
ADL

Software
Architec-
ture

Static Sliced
Com-
po-
nents

2 Kim et al. [28] ACME and
RAPIDE
ADL

Software
Architec-
ture

Dynamic Sliced
Com-
po-
nents

3 Mohapatra [7] Object-
Oriented
Program

Java
Prorgam

Dynamic Sliced
objects

4 Panthi et al. [32, 33] UML Sequence
diagram

Static Test
cases

5 Lallchandani et al. [17] UML Class and
Sequence
diagram

Dynamic Sliced
objects

7 Our MBGDS Algo. SoaML Services
and Se-
quence
diagram

Dynamic Sliced
mes-
sages

11

Table 4: Average run-time of web service execution

Sl. No. WSDL Name XMI Average
(#LOT) Run-Time

(in Sec)
1 CGCD (our example) 55 0.24
2 country 901 3.79
3 creditcard 155 0.64
4 currencyconvertor 315 1.50
5 globalweather 238 1.03
6 isbn 154 0.63
7 medicareSupplier 226 0.95
8 periodictable 403 1.66
9 rsstohtml 152 0.61

10 sendsms 177 0.68
11 sendsmsworld 161 0.65
12 statistics 121 0.47
13 sunsetriseservice 123 0.49
14 whois 162 0.62

12

Table 5: Comparison with related work

Sl. No. Related Work Standard/ Technique/ Dependency Tool Output
/Approach/ Framework

1 Tsai et al. [34] object-oriented testing
framework

- - Test
cases

2 Bai et al. [38] WSDL input, out-
put and
inuput-
output

- Service
test
case
spec-
ifica-
tion

3 Tsai et al. [36] extended WSDL input, out-
put and
inuput-
output

- Test
cases

4 Bartolini et al. [3] WSDL and XSD - soapUI and
TAXI

Test
cases

5 Bartolini et al. [4] WS-TAXI framework - WS-TAXI Test
cases

6 Our approach extended WSDL control and
data

Service
consumer

SOAP
re-
sponse

13

Table 6: Test cases execution and its status

Unique Element Data XSD XSD Input Test
Node Name Type Constraints Constraints Case

Number Value Status
1 & 2 product

name
xs:string minOccurs 1 “ mi3” Valid

1 & 2 quantity xs:int minOccurs 1 “ABC” Invalid
1 & 2 price xs:int minOccurs 1 12000 Valid
1 & 2 seller name xs:string minOccurs 1 1 Invalid
1 & 2 contact ad-

dress
xs:string minOccurs 1 china Valid

3 & 4 product
name

xs:string minOccurs 1 1 Invalid

3 & 4 pincode xs:int minOccurs 1 384001 Valid
3 & 4 quantity xs:int minOccurs 1 1 Valid
5 & 6 shipping

company
name

xs:string minOccurs 1 “DHL” Valid

5 & 6 address xs:string minOccurs 1 1 Invalid
5 & 6 charges xs:int minOccurs 1 5000 Valid
7 & 8 username xs:string minOccurs 1 “ABC” Valid
7 & 8 password xs:string minOccurs 1 “123” Valid

9 & 10 mobile no xs:int minOccurs 1 “ABC” Invalid
11 & 12 tusername xs:string minOccurs 1 “XYZ” Valid
11 & 12 tpassword xs:string minOccurs 1 “test123” Valid

13 product
name

xs:string minOccurs 1 “123” Invalid

13 quantity xs:int minOccurs 1 1 Valid
13 customer

name
xs:string minOccurs 1 “KKR” Valid

13 address xs:string minOccurs 1 “india” Valid
13 contact no xs:int minOccurs 1 9726677988 Valid

14 & 15 card type xs:string minOccurs 1 “CREDIT” Valid
14 & 15 card no xs:int minOccurs 1 “ABC” Invalid
14 & 15 expiry date xs:date minOccurs 1 2020-05-05 Valid
14 & 15 PIN xs:int minOccurs 1 “ABC” Invalid
14 & 15 OTP xs:int minOccurs 1 1334 Valid
16 & 17 customer

name
xs:string minOccurs 1 “KKR” Valid

16 & 17 address xs:string minOccurs 1 “india” Valid
16 & 17 product

name
xs:string minOccurs 1 “mi3” Valid

16 & 17 contact no xs:int minOccurs 1 9726677988 Valid
14

Table 7: Test case execution on Online Shopping System (OSS)

Test Element Data Input XSD XSD Test
Case Name Type Constraints Constraints Case
ID Value Status
1 seller name xs:string “xiaomi” minOccurs 0 Invalid
2 seller name xs:string “xiaomi ” minOccurs 1 Valid
3 seller name xs:string 12 minOccurs 1 Invalid
4 product name xs:string “mi” minOccurs 0 Invalid
5 product name xs:string “mi” minOccurs 1 Valid
6 product name xs:string 12345 minOccurs 1 Invalid
7 quantity xs:int 12345 minOccurs 0 Invalid
8 quantity xs:int 12345 minOccurs 1 Valid
9 quantity xs:int “ABC” minOccurs 1 Invalid
10 contact address xs:string “China” minOccurs 0 Invalid
11 contact address xs:string “ China” minOccurs 1 Valid
12 contact address xs:string 123 minOccurs 1 Invalid
13 price xs:int 12000 minOccurs 0 Invalid
14 price xs:int 12000 minOccurs 1 Valid
15 price xs:int “XYZ ” minOccurs 1 Invalid
16 shipping company name xs:string “DHL” minOccurs 0 Invalid
17 shipping company name xs:string “DHL” minOccurs 1 Valid
19 address xs:string “DEF” minOccurs 1 Valid
20 tusername xs:string “test” minOccurs 1 Valid
21 tpassword xs:string “test123” minOccurs 1 Valid
22 username xs:string “test1” minOccurs 1 Valid
23 password xs:string “test123456” minOccurs 1 Valid
24 pincode xs:int 4 minOccurs 1 Valid
25 card type xs:string “MAESTRO” minOccurs 1 Valid
26 card no xs:int 123456789 minOccurs 1 Valid
27 expiry date xs:date 2016-05-24 minOccurs 1 Valid
28 PIN xs:int 4554 minOccurs 1 Valid
29 OTP xs:int 4664 minOccurs 1 Valid

15

Table 8: Average run-time of MBDSWS algorithm

Sl. No. Web Service & Service Client Avg. Run-Time
(# stmts) (in Sec)

1 141 0.88
2 120 0.84
3 101 0.76
4 79 0.51
5 62 0.42
6 30 0.32
7 12 0.22

6.5 Work-5: White-box Testing of Service-Oriented Software (SOS)

Table 8 summarizes the average run-time requirements of MBDSWS algorithm. Right now
the tools accept only a subset of Java constructs. So the program sizes are small. How-
ever, the results indicate the overall trend of the performance of our MBDSWS algorithm.
Since, we computed the dynamic slices at different statements of both web services and its
service client, we have calculated the average run-time requirements of the MBDSWS algo-
rithm. From the experimental results, it can be observed that the average run-time increases
sublinearly as the no. of statements increases in a web service and its client program.

7 Conclusion

The primary aim of our work was to compute slices and test SOA-based software. We have
proposed a novel technique for slicing SOA based on SoaML service interface diagram.
Slicing SoaML service interface diagram is difficult due to distributed participant with im-
plicit dependencies among them. We first construct SIDG, an intermediate representation
for service interfaces. Our SSSIM algorithm uses SIDG information to compute static slice.
Such slice can be used for change impact analysis, testing and understanding distributed
architecture such as SOA.

Next we have proposed a novel algorithm for computing dynamic slices of service-
oriented programs. We have named our algorithm Marking Based Global Dynamic Slicing

(MBGDS) algorithm. We consider SoaML sequence diagram and services. Our algorithm
uses Service-Oriented Software Dependency Graph (SOSDG) as the intermediate represen-
tation. The MBGDS algorithm is based on marking and unmarking the edges of the SOSDG
as and when the dependencies arise and cease at run-time. Our algorithm does not use any
trace file to store the execution history. Also, it does not create additional message nodes

16

during run-time. This saves the expensive file I/O and node creation steps. Another advan-
tage of our approach is that when a request for a slice is made, it is easily available. We have
developed a slicer to verify the proposed algorithm.

Thereafter, we have successfully applied black-box testing strategy to test web service.
The novelty of our approach is imposing a hierarchical structure on WSDL, getting depen-
dency information in the form of extensible elements. We have successfully tested our pro-
posed approach.

Then we illustrated the testing approaches for SOA-based software using BPMN and
SoaML diagrams. First, we describe our testing algorithm for service-oriented software us-
ing BPMN 2.0 diagram, in that we presents CFG generation algorithm and its implementa-
tion. Next, we tested test paths of CFG by applying various test cases. Secondly, we present
another algorithm for testing service-oriented software using SoaML service interface dia-
gram. In that context, we generated XML schema and its instance. Finally, we tested XML
schema instance.

Publication List

Slicing of Service-Oriented Software

1. Web Service Discovery: Concepts, Approaches, Challenges, In National Con-

ference on Distributed Computing (NCDC09), 20-21 March 2009, Volume 1, Osman-
abad, India, 2009.

2. Dynamic Slicing of Remote Procedure Call (RPC) Program for Debugging, In
Recent Trends in Object-Oriented Software Testing (RTOOST09), 22-24 June 2009,
NIT Rourkela, India, 2009.

3. A Novel Technique For Static Slicing of SoaML Service Interface Diagram, In
The 11th IEEE India Conference (INDICON 2014), 11-13th December 2014, Pune,
India, 2014.

Testing of Service-Oriented Software

4. Black-box Testing of Web Service, In International Journal of Computer Science

& Informatics (IJCSI), Volume-3, Issue-2, Page 48-51, 2013.

5. Testing Web Services by Applying Program Slicing, In International Journal of

Advance Research in Computer Science and Management Studies,Volume 2, Issue 1,
January 2014.

17

Bibliography

[1] Ashish Seth, Himanshu Agrawal, Shim Raj Singla, “Testing and Evaluation of Service
Oriented Systems”,[online]. Available: www.arxiv.org.[accessed on 18/03/2014].

[2] Bart van Teeseling, “Testing Service-oriented Architecture using a simulation”, Mas-

ter Thesis, Rijksuniversiteit Groningen, University of Groningen, 2010.

[3] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, Andrea Polini, “Towards Auto-
mated WSDL-Based Testing of Web Services”, In the 6th International Conference

on Service Oriented Computing, December 1-5, 2008, University of Technology, Syd-

ney, Ultimo City Campus, LNCS 5364, Springer-Verlag Berlin Heidelberg 2008, Page
524-529, 2008.

[4] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, Andrea Polini, “WS-TAXI: a
WSDL-based testing tool for Web Services”, In the International Conference on Soft-

ware Testing Verification and Validation, 2009.

[5] Cesere Bartolini, Antonia Bertolini, Sebastian Elbaum, Eda Marchetti, “Whitening
SOA Testing”, In the Proceedings of ESEC/FSE 09, Page 161-170, 2009.

[6] David S. Linthicum, David Bressler, “Key Strategies for SOA Testing”, Progress soft-
ware, [online]. Available: www.progress.com. [accessed on 18/03/2014].

[7] Durga Prasad Mohapatra, “Dynamic Slicing of Object-Oriented Programs”, Ph.D

Thesis, Department of Computer Science & Engineering, IIT Kharagpur, May 2005.

[8] Ed Morris, William Anderson, Sriram Bala, David Carney, John Morley, Patrick
Place, Soumya Simanta, “Testing in Service-Oriented Environments”, Technical Re-

port, CMU/SEI-2010-TR-011 ESC-TR-2010-011 March 2010, [online]. Available:
www.sei.cmu.edu , [accessed on 18/03/2014].

[9] Forrester Research, Enterprise and SMB Software Survey, North America and Europe,
2008.

[10] Gaurish Hattangadi, “A Practitioners guide to Modern SOA Testing”, White Paper,
Infosys, July 2011.

[11] Gerardo Canfora, Massimilliano Di Penta, “SOA: Testing and Self-Checking”, Inter-

national Workshop on Web Services Modeling and Testing (WS-MaTe2006), 2006.

[12] Gerardo Canfora, Massimilliano Di Penta, “Testing Services and Service-Centric Sys-
tems: Challenges and Opportunities”, IT Pro IEEE, March-April 2006.

18

[13] International Data Corporation(IDC), [online], Available: http://www.idc.com/, [ac-
cessed on 18/03/2014].

[14] Jaiprakash T Lallchandani, R Mall, “Slicing UML Architectural Models”, ACM SIG-

SOFT Software Engineering Notes, Volume 33, No. 3, Page 1, May 2008.

[15] Jaiprakash T. Lallchandani, R. Mall, “Static Slicing of UML Architectural Models”,
Journal of Object Technology, Volume 8, No. 1, Page159-188. 2009.

[16] Jianjun Zhao, “Slicing Software Architecture”, Technical Report, Information Pro-
cessing Society of Japan, Page 85-92, Nov 1997.

[17] Lallchandani and R. Mall, “A Dynamic Slicing Technique for UML Architectural
Models, IEEE Transaction on Software Engineering, Volume 37, No. 6, 2011.

[18] Lanchezar Ribarov, Ilina Manova, Sylvia Ilieva, “Testing in a Service-Oriented
World”, In the Proceeding of the International Technologies (InfoTech-2007), Septem-
ber 21-23, Bulgaria. Volume 1, 2007.

[19] Marcos Palacios, Jose Garcia-Fanjul, Javier Tuya, “Testing in Service Oriented Ar-
chitectures with Dynamic Binding: A Mapping Study”, Information and Software

Technology’, Elsevier doi:10.1016/j.infsof.2010.11.014.

[20] Mathew Heusser, “Testing Service-Oriented Architecture: A Primer for the Real
World”, July 31, 2008.

[21] Neil Davidson, “Learn how Lufthansa cargo achieved a problem rate of less than .2%
while reducing testing efforts by 20%”, White Paper, [online]. Available: www.red-

gate.com.[accessed on 18/03/2014].

[22] Nicolas Gold and Andrew Mohan, Claire Knight, Malcolm Munro, “Understanding
Service-Oriented Software”, IEEE Software, 2004.

[23] Rajib Mall, Fundamentals of Software Engineering, PHI Learning Private Limited,
second edition, February 2009.

[24] Scharam Dustdar, Stephan Haslinger, “Testing of Service Oriented Architectures- A
practical approach”, Springer LNCS, Page 27-30, September 2004.

[25] “Service-Oriented Architecture Overview and Guide to SOA Research”, [online].
Available: www.gartner.com, [accessed on 18/03/2014].

[26] “SOA Testing Technique”, [online]. Available: http://www.blog.soatetsting.com, [ac-
cessed on 18/03/2014].

19

[27] Srikant Inaganti, Sriram Arvamudan, “Testing SOA Application”, BPTrends, April
2008, [online]. Available: www.bptrends.com., [accessed on 18/03/2014].

[28] Taeho Kim, Yeong-Tae Song, Lawrence Chung, and Dung T. Huynh, “Dynamic Soft-
ware Architecture Slicing”, 23rd International Computer Software and Applications

Conference, COMPSAC ’99, Washington, DC, USA, Page 61-66, 1999.

[29] “Testing Service-Oriented Architecture (SOA) Applications and Services”, White Pa-

per, [online]. Available: www.hp.com/go/software.[accessed on 18/03/2014].

[30] Torry Harris, “SOA Test Methodology”,[online]. Available: http://www.thbs.com/soa,
[accessed on 18/03/2014].

[31] “Testing New-age Application Built on Service Oriented Architecture”, White Paper.
[online]. Available: www.cognizent.com.[accessed on 18/03/2014].

[32] Vikash Panthi and Durga Prasad Mohapatra, “Automatic Test Case Generation Using
Sequence Diagram”, In the Proceedings of ICAdc, AISC 174, Springer India, Page
277-284, 2013.

[33] Vikash Panthi, Durga Prasad Mohapatra, “Automatic Test Case Generation Using Se-
quence Diagram”, International Journal of Applied Information System (IJAIS), Vol-
ume 2, Page 4, May 2012.

[34] W. T. Tsai, Ray Paul, Weiwei Song, Zhibin Cao, “Coyote: An XML-Based Frame-
work for Web Services Testing”, In the Proceeding of the 7th IEEE International

Symposium on High Assurance Systems Engineering (HASE’02), 2002.

[35] W.T.Tsai, Jerry Gao, Xiao Wei, Yinong Chen, “Testability of Software in Service-
Oriented Architecture”, In the Proceeding of the 30th annual International Computer

Software and Applications Conference(COMPSAC06), IEEE, 2006.

[36] W.T.Tsai, Ray Paul,Yamin Wang, Chun Fan, Dong Wangl, “Extending WSDL to Fa-
cilitate Web Services Testing”, In the Proceeding of the 7th IEEE International Sym-

posium on High Assurance Systems Engineering (HASE’02), 2002.

[37] Web Service WSDL data sets, [online]. Available: http://webservix.net/, [accessed on
18/03/2014].

[38] Xiaoying Bai, Wenli Dongl, Wei-Tek Tsai, Yinong Chen, “WSDL-Based Automatic
Test Case Generation for Web Services Testing”, In the Proceedings of the 2005 IEEE

International Workshop on Service-Oriented System Engineering (SOSE05), 2005.

20

	1 Introduction
	2 Motivation
	3 Objectives
	4 Scope of Our Work
	5 Original Contribution by the Thesis
	6 Work Done
	6.1 Work-1: Static Slicing of Service-Oriented Software (SOS)
	6.2 Work-2: Dynamic Slicing of Service-Oriented Software (SOS)
	6.3 Work-3: Black-box Testing of Service-Oriented Software (SOS)
	6.4 Work-4: Model-based Testing of Service-Oriented Software (SOS)
	6.5 Work-5: White-box Testing of Service-Oriented Software (SOS)

	7 Conclusion
	Bibliography

