GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROGRAMMABLE LOGIC CONTROLLER AND DISTRIBUTED CONTROL SYSTEM

(Code: 3341702)

Diploma Program in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	4 th Sem

1. RATIONALE

Different logical process automation is used for optimum controlling of the process parameters and hence Diploma Engineers should be able to maintain them. This requires that they should know very well about logical control action fundamentals. Hence this curriculum has been designed so that the students will be able to explain the construction, working and applications of various logical control strategies for automation.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate and Maintain programmable logical controllers and distributed control system.

3. COURSE OUTCOMES

i.Identify logical process control in automation (PLC and DCS based automation).

- ii.Connect the PLC peripherals with the PLC for logical functioning.
- iii.Develop basic PLC programmes.

iv.Maintain PLC.

4. TEACHING AND EXAMINATION SCHEME

Tea	Teaching Scheme		Total	Total Examina		ation Sch	neme							
((In Hours)		Credits	Theory Marks		Theory Marks		Theory Marks		Theory Marks		Prac	ctical	Total
			(L+T+P)			Ma	irks	Marks						
L	Т	Р	С	ESE	PA	ESE	PA							
3	0	4	7	70	30	40	60	200						

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit Unit – I Logical Process control in automation	Major Learning Outcomes('Course Outcomes' inCognitive Domain according toNBA terminology)1a. Describe different processcontrol techniques.1b. Explain the working of datalogger, DDC, SCADA.1c. Justify need of automation in	Topics and Sub-topics1.1. Introduction to process control1.2. Continuous Process Control1.3. Discrete-state Process Control1.4. Composite Process Control1.5. Data logger, DDC, SCADA
Unit – II	industry.	1.6. Scope of automation in industry.
PLC architecture	 2a. Draw Block diagram of PLC. 2b. Describe PLC architecture. 2c. Explain the working of PLC. 2d. List the steps to configure the PLC. 2e. List out peripherals for PLC 2f. Draw basic symbols used for PLC. 2g. Describe selection criteria for PLC. 2h. State advantages and Disadvantages of PLC. 2i. List out PLC applications in industries and automation systems. 	 2.1. Introduction to PLC 2.2. Configuration of PLC(components for modularized PLC) 2.3. Architecture of PLC 2.4. Working of PLC 2.5. PLC peripherals 2.6. PLC symbols 2.7. Selection criteria of PLC 2.8. Advantages and disadvantages of PLC 2.9. PLC applications
Unit – III PLC peripherals and wiring	 3a.Identify analog input /output module for PLC. 3b.Identify digital input /output module for PLC. 3c.Describe analog input /output module. 3d.Describe digital input /output module. 3e.Explain and Interface analog/digital input/output module (including wiring) with PLC. 3f.Draw connection diagram to 	 3.1. Analog input/ output module 3.2. Digital input/ output module 3.3. Switching devices (level, pressure, flow, temperature, timer, proximity switch). 3.4. PLC input/output connection. 3.5. PLC power connection (wiring). 3.6. Isolated and non isolated input/output wiring to PLC.

	Major Learning Outcomes	Topics and Sub-topics
	('Course Outcomes' in	Topics and Sub-topics
Unit	Cognitive Domain according to	
	NBA terminology)	
	connect the switching devices	
	with PLC.	
	3g.Describe the isolation	
	technique.	
	3h.Draw the Isolated and non-	
	isolated input wiring to PLC.	
	3i.Explain the Isolated and non	
	isolated input wiring to PLC.	
Unit – IV	4a.Describe general programming	
Basic PLC	procedure.	4.1. Introduction to General PLC
programming	4b.List special key board and	Programming Procedures.
	display functions of hand-held	4.1.1Programming equipment-
	programmer	Hand held programmer
	4c.List the steps to upload ON-	4.1.2 Programming sequence
	line, OFF-line program by	4.1.3 PLC Ladder Diagrams
	hand-held programmer	4.1.4Process scanning
	4d.List the steps for Programming	consideration
	sequence of PLC.	4.1.5PLC operational fault.
	4e.Describe the legal (proper) /	
	illegal (improper) PLC	4.2. NOT ,AND, OR, NAND, NOR,
	ladder diagram	Ex-OR, Ex-NOR logic.
	4f.List the important scanning	4.3. PLC Programming languages.
	considerations for PLC.	4.4. Boolean algebraic equation.
	4g.List the corrective steps to be	4.5. Holding (latching relay) contact.
	taken in case of PLC	4.6. Branching and complex
	operational fault.	branching ladder rung.
	4h. Develop Relay based logical	4.7. Temperature control using ladder
	functions.	logic.
	4i.List out different types of PLC	
	Programming languages.	
	4j.Develop Ladder logic for	
	NOT, AND, OR, NAND, Ex-	
	OR, Ex-NOR logic.	
	4k.Develop ladder logic for given	
	Boolean algebraic equation.	
	4l.Develop Ladder logic for	
	holding contact.	
	4m.Develop ladder logic for	
	simple and complex branching	

	Major Learning Outcomes	Topics and Sub-topics
Unit	('Course Outcomes' in Cognitive Domain according to	
	NBA terminology)	
	ladder rung.	
	4n.Develop ladder logic for ON-	
	OFF temperature control using	
	timer and limit switches.	
Unit – V	5a.Explain concept of DCS.	5.1. Introduction to DCS.
Distributed	5b.Draw Hierarchy of DCS.	5.2. History of DCS.
Control	5c.Describe Hierarchy of DCS.	5.3. Concept of DCS.
System (DCS)	5d.List functions of each level of	5.4. Hierarchy of DCS.
	DCS.	5.5. Functions of each level of DCS.
	5e.Describe functions of each	5.6. Network topology for DCS.
	level of DCS.	5.7. Display organization (Monitoring
	5f.State Strengths and limitations of DCS.	facilities) for DCS.
	5g.Explain network topology for DCS.	
	5h.Describe different display of DCS.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
		Hours	R U		Α	Total
			Level	Level	Level	Marks
Ι	Logical Process control in	04	01	02	04	07
	automation					
II	PLC architecture	08	02	04	08	14
III	PLC peripherals and wiring	08	02	04	08	14
IV	Basic PLC programming	12	03	06	12	21
V	Distributed Control System	10	02	04	08	14
Total		42	10	20	40	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises	
		(Outcomes' in Psychomotor Domain)	Hrs.
			Required
1.	Ι	Identify continuous, discrete control and composite control	2
		system.	
2.	Ι	Connect direct digital control for a process.	2
3.	Ι	Connect data logger to a process.	2
4.	Ι	Identify components of SCADA.	2
5.	II	Prepare PLC specification for given situation for automation.	2
6.	II	Identify various modules and component of PLC hardware.	2
7.	III	Assemble various modules and component of PLC to make a	2
		PLC system.	
8.	III	Wire given level control system for automation.	2
9.	III	Wire given temperature control system for automation.	2
10.	III	Wire given flow control system for automation.	2
11.	IV	Use relay as a switch to make circuit ON.	2
12.	IV	Implement NOT, AND & OR logic using relay(s).	2
13.	IV	Implement NAND & NOR logic using relay(s).	
14.	IV	Implement EX-OR & EX-NOR logic using relay(s).	
15.	IV	Identify programming formats and proper construction of	2
		ladder diagrams of given PLC.	
16.	IV	Build NOT, AND & OR logic using ladder diagram with the	2
		help of PLC.	
17.	IV	Build NAND & NOR logic using ladder diagram with the help2	
		of PLC.	
18.	IV	Build EX-OR & EX-NOR logic using ladder diagram with the2	
		help of PLC.	
19.	IV	Develop ladder diagram to prepare latching relay.	
20.	IV	Develop ladder to switch ON motor for given condition	2
21.	IV	Develop ladder diagram for given level control system using	2

		level switch	
22.	IV	Develop ladder diagram for given temperature control system	2
		using temperature switch	
23.	IV	Develop ladder diagram for given flow control system using	2
		flow switch	
24.	V	Identify various level of distributed control system	2
25.	V	Indentify various display of distributed control system2	
26.	V	Connect personal computers in network using ring topology	2
27.	V	Connect personal computers in network using star topology	2
Total ho	urs		54

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Assemble PLC power supply PLC, Input / Output module on mounting rack.
- ii. Wire automatic level control system using various components.
- iii. Wire automatic temperature control system using various components.
- iv. Wire automatic flow control system using various components.
- v. Connect personal computer using star topology.
- vi. Connect personal computer using ring topology.

9. SPECIAL INSTRUCTIONAL STRATEGIES

- i. Visits to Industries.
- ii. Use free simulators for PLC programming in the class when teaching.
- iii. Video films/animation films on working of different type automatic system such as PLC, DDC, SCADA and DCS, from YouTube and other resources.
- iv. Mini project.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1	Programmable logic	John w. Webb	PHI Learning,
	Controllers Principles and	Ronald A Reis	
	applications		
2	Programmable logic	John R Hackworth	Pearson
	Controllers Programming	Frederick D.	
	methods and applications	Hackworth Jr.	
3	Process Control Principles	Surekha Bhanot	Oxford University press
	and applications		
4	Instrumentation engineer's	B.G Liptak	Chilton Book Co.,
	handbook		Philadelphia
5	Process control	Curtis D Johnson	PHI pvt. Ltd.
	Instrumentation technology		

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Electrical tool kit
- ii. Multi-meter
- iii. Master PLC with Power supply and Hand held PLC programmer (touch screen teach pendent).
- iv. Slave PLC with Power supply and Hand held PLC programmer.
- v. 24 analog input module (8 analog input module 3NO.)
- vi. 24 analog output module (8 analog output module 3NO.)
- vii. 24 digital input module (8 digital input module 3 NO.)
- viii. 24 digital output module (8 digital output module 3 NO.)
- ix. level switches
- x. temperature switches
- xi. flow switches
- xii. 3" conveyor system operated 12V DC motor with digital shaft encoder
- xiii. Proximity switches (Inductive, Optical, motion, light etc.)
- xiv. 12 V DC motor with digital shaft encoder
- xv. PLC based Automatic bottle filling plant
- xvi. Flow, temperature, level control setup for PLC based automation using Flow, temperature, level switches.

C) List of Software/Learning Websites

- i. www.control.com
- ii. www.wikipedia.org
- iii. www.youtube.com
- iv. www.ourinstrumentationgroup.com
- v. www.googlebooks.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. R. P. Merchant HOD IC Engineering, Govt. Polytechnic, Gandhinagar
- Prof. A. K. Bilakhia Lecturer IC Engineering, Govt. Polytechnic, Gandhinagar
- Prof. N. B. Mehta Lecturer IC Engineering, Govt. Polytechnic, Ahmedabad
- Prof. S. K. Raval, Lecturer IC Engineering, Govt. Polytechnic, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. Joshua Earnest**, Professor, Department of Electrical and Electronics Engineering.
- **Prof. (Mrs.) Susan S. Mathew**, Associate Professor, Department of Electrical and Electronics Engineering.