GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ADVANCE PHYSICAL METALLURGY (Code: 3342104)

Diploma Programme in which this course is offered	Semester in which offered
Metallurgy Engineering	4 th Semester

1. RATIONALE

This course deals with the understanding of physical and chemical behavior of different ferrous and non ferrous metals and alloys with respect to their composition, properties and applications including phase diagrams. This course will help the student to understand the effect of alloying elements leading to modification of properties in the alloys and their applications. It is therefore a key course for metallurgical engineers who want to advance in this field.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different skills in the students so that they are able to acquire following competency:

• Use physical and chemical behavior of different ferrous and non ferrous metals and alloys with respect to their composition, and properties for production and application of metals and alloys.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish between metals and alloys
- ii. Explain transformation for various carbon percentages
- iii. Relate Carbon, microstructure and mechanical properties
- iv. Distinguish different types of stainless steel with reference to composition, microstructure, properties, and applications.
- v. Compare different types of Copper alloys based on properties and applications

4 TEACHING AND EXAMINATION SCHEME

	Examination Scheme			Total Credits	cheme	ching S	Tea		
Total Marks	Marks	Practical	Theory Marks		+T+P) Theory Marks		(L+T+P)	(In Hours)	
	PA	ESE	PA	ESE	С	Р	Т	L	
200	60	40	30	70	8	4	0	4	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics		
	(in cognitive domain)	4 4 5 6 7 1 6 11 1 1 4 1 7 7 7		
Unit – I	1a. Distinguish between metals	1.1 Metals, Alloys and their structural		
Introduction to	and alloys	constituents, systems & phases.		
Metals & Alloys	1b. Explain phase	1.2 Thermodynamic consideration of phase		
	transformation	transformations.		
	1c. Construct equilibrium	1.3 Equilibrium diagrams & cooling curves.		
	diagram from cooling curve	1.4 Types of systems.		
Unit – II	1d. Explain types of systems2a. Draw Iron-Carbon	2.1 Letter heating of Lean Carbon		
Iron-Carbon		2.1 Introduction of Iron-Carbon		
	Equilibrium Diagram and explain critical and	Equilibrium Diagram.		
Equilibrium Diagram	invariant points, allotropic	2.2 Critical points & invariant points /		
Diagrain	forms of iron	allotropic forms.		
	2b.Establish relationship	2.3 Definitions of related Phases & micro		
	between phases and	constituents and their effect on		
	mechanical properties	mechanical properties.		
	2c.Explain transformation for	2.4 Transformations in steel and cast iron		
	various carbon percentages	with various carbon percentages.		
Unit – III	3a. Distinguish between steel	3.1 Definition and Classification of Steel		
Physical	and cast iron	and Cast Iron		
Metallurgy of	3b. Relate Carbon,	3.2 Relationship between Carbon,		
Ferrous Metals	microstructure and	microstructure and mechanical		
and Alloys	mechanical properties	properties.		
	3c. Describe applications and			
	limitations of plain carbon	3.3 Application and Limitations of plain carbon steels.		
	steels and cast iron			
	3d. Explain cast iron with	3.4 Types of cast iron with respect to		
	respect to composition,	composition, microstructure, properties		
	microstructure, properties	and application.		
T T 1 / T T	and applications.			
Unit – IV	4a. Describe attributes of tool	4.1 Classification of tool steels.		
Physical	steel, HSS, Stainless Steel	4.2 High speed tool steels(HSS)		
Metallurgy of	4b. Describe composition and	classification, composition and		
High Alloy steels	applications of HSS 4c. Distinguish different types	applications.		
	of stainless steel with	4.3 Classification of stainless steels.		
	reference to composition,	4.4 Types of stainless steel with reference		
	microstructure, properties,	to composition, microstructure,		
	and applications.	properties, and application.		
Unit – V	5a. Compare different types of	5.1 Copper and its alloys: Binary		
Physical	Copper alloys based on	equilibrium diagram of Cu- Zn, Cu- Sn,		
Metallurgy of	properties and applications	Composition, properties, uses and		
Non-Ferrous	5b. Differentiate different types	microstructure.		
Metals and	of Aluminium alloys	5.2 Aluminium and its alloys: Binary		
Alloys	with reference to properties	equilibrium diagram of Al-Si, Al –Cu,		
	and applications	Al- Mg, Composition, properties, uses		
	5c. Distinguish various white	and Microstructure.		
	bearing metals based on			
	properties and applications	5.3 White bearing metal: Composition,		
		properties, uses and Microstructure.		

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R U		Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction to Metals &	8	6	4	2	12
	Alloys					
II	Iron-Carbon Equilibrium	10	8	5	2	15
	Diagram					
III	Physical Metallurgy of	12	6	5	4	15
	Ferrous Metals and Alloys					
IV	Physical Metallurgy of High	12	6	6	8	20
	Alloy steels					
V	Metallurgy of Non-Ferrous	14	4	2	2	8
	Metals and Alloys					
To	tal Hrs	56	30 22 18 70			70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs. Required
1	Ι	Preparation of metallic specimen for microscopic examination as per I.S. code.	12
2	Ι	Draw equilibrium diagram for given data.	4
3	II	Draw and label iron carbon equilibrium diagram and explain cooling of hypo eutectoid, eutectoid, hyper eutectoid steel.	4
4	III	Prepare sample specimen. Identify and Distinguish microstructures of plain carbon steels.	4
5	III	Prepare sample specimen. Observe and compare microstructure of various types of C.I.	4
6	IV	Observe and draw microstructures of High Speed Tool steels.	4

S. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs. Required
7	IV	Observe, draw and compare microstructures of Stainless steels.	4
8	V	Identify, draw and distinguish distinct features of microstructure of Copper and alloys.	4
9	V	Identify, draw and distinguish distinct features of microstructure of Aluminium and alloys.	4
10	10 V Identify and distinguish distinct features of microstructure of white bearing metal		4
11	I to V	Microstructure analysis by Image analyser and Photo metallography as per I.S. code.	8
Total H	rs		56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Students may be given data to draw equilibrium diagram of different system and apply lever rule and Gibb's phase rule.
- ii. Students may be given sample to prepare microstructure and identify phases and relate it to properties of materials.
- iii. Students will prepare file and get it checked from concerned faculty.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i Show video/animation films or photographs explaining microstructure of metals and their effect on properties of metals/alloys.
- ii Seminar by group of students on different topic related to the course. .

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Books	Author	Publication
1	Physical Metallurgy Principles	R.E. Reed Hill	East - West
2	Introduction to Physical Metallurgy	S. H. Avner	Tata Mc-Graw Hill
3	Physical Metallurgy for Engineers	D. S. Clark and W. R. Varney	East-West press
4	Engineering Metallurgy : Applied Physical Metallurgy	R. A. Higgins	Viva Books
5	Material science and Metallurgy	V.D. Kodgire	Everest Publishing House

B. List of Major Equipment/Materials

- i. Metallurgical Microscope
- ii. Standard specimens
- iii. Polishing disc machine to prepare specimens with necessary consumables.
- iv. Emery papers, etching reagents
- v. Image Analysis System

C. List of Software/Learning Websites

- i. http://nptel.iitm.ac.in/courses.php?disciplineId=113
- ii. http://www.sv.vt.edu/classes/MSE2094_NoteBook/96ClassProj/examples/kimco n.html
- iii. http://www.youtube.com/watch?v=IskiZaGDQow
- iv. http://ocw.mit.edu/courses/index.htm#materials-science-and-engineering

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Dr I. B. DAVE**, HOD, Dept of Metallurgy, Dr S & S.S.Ghandhy College of Engg. & Technology
- **Prof. (Smt.) B. H. Goyal**, I/c. Head of Department of Metallurgy, Dr S and S.S Ghandhy college of Engg. and Technology
- **Dr. G. H Upadhyay**, Professor of Metallurgy, Department of Mechanical Engineering, L.D.College of Engineering, Ahmedabad
- **Prof. H. H. Jadav**, Assistant Professor, Metallurgy Department, Government Engineering College, Sector 28, Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. C.K Chugh, Professor, Department of Mechanical Engineering
- Dr. K.K. Jain, Professor and Dean, Department of Mechanical Engineering