GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ELECTRONIC AND PNEUMATIC INSTRUMENTATION (COURSE CODE:3351701)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th semester

1. RATIONALE

In spite of the massive transition of the process control industry from the pneumatic to an electronic and digital age ,the study of pneumatic instrumentation is significantly essential since pneumatics are still widely used in the control valves of the control loops. Through this course the students will acquire sound theoretical and practical knowledge of the various pneumatic and electronic instruments widely deployed in the process industries.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that students are able to acquire following competency.

• Operate and Maintain electronic and pneumatic instruments.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes..

- i. Classify and identify the instrument according to signal type.
- ii. State standard signal units and ranges and perform signal conversion.
- iii. Select and operate pneumatic and electronic instrument
- iv. List application of electronics and pneumatic instrument
- v. Differentiate pneumatic vs. electronic instrumentation and control systems.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total			Total		Exan	nination S	cheme	
	(Hours)		Credits (L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	T	P	С	ESE	PA	ESE	PA	200
3	0	4	7	70	30	40	60	200

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in cognitive domain)	
Unit – I	1a Classify and list electronic	1.1 Classification of electronic
Fundamentals	instrument based on	instruments as under
of	laboratory/testing/ Field	 Laboratory- / Testing
Measurement	instruments.	instruments.
	1b Describe working principle,	 Field instruments.
	construction of electric	1.2 Electrical meters/Instruments
	meters/instruments with neat	1.2.1 PMMC type
	schematic diagram (1.2.1 to	1.2.2 Rectifier type
	1.2.4).	1.2.3 Moving Iron type
	1c Enlist applications of electric	1.2.4 Electro dynamic type
	meters/instruments (1.2.1 to	1.3 Test instruments
	1.2.4).	1.3.1 Standard signal generator
	1d Draw block diagram of basic	(S.S.G.).
	instruments and explain operation	1.3.2 Ramp type DVM
	in detail.(1.3.1 to 1.3.5)	1.3.3 CRO
	1e Enlist application of listed test	1.3.4 Digital storage
	instruments (1.3.1 to 1.3.5)	oscilloscope(DSO)
	1f Enlist additional features of DSO	1.3.5 Electronic calibrator
	with reference to CRO.	1.4 Classification of measuring
	1g Classify and list types of	Bridge
	Measurement Bridge.	1.4.1 DC bridges (for resistance
	1h State Uses of bridges in	measurement)
	Instrumentation	Wheatstone Bridge
	1i Explain the circuit diagram of	Kelvin Bridge
	Wheatstone bridge and derive the expression for unknown	1.4.2 AC bridges(for
	resistance.	inductance/capacitance
	1j Explain the circuit diagram of	measurement)
	Kelvin Bridge.	Maxwell's Bridge
	1k Enlist applications of Wheatstone	Anderson's bridge
	bridge and Kelvin Bridge.	Desauty's's bridge
	11 Describe working principle and	1.5 Isolation and its techniques
	construction of AC bridge with	1.6 Need for standardization of
	neat diagram(1.4.2)	signals-Current, voltage, and
	1m Discuss importance of isolation.	pneumatic signal standards
	1n Describe isolation technique in	
	detail.	

	10 State need for standardization of	
	signals.	
	1p State standard unit and range for	
	pneumatic signal used in	
	instrumentation.	
	1q State standard unit and range for	
	electronic signal used in	
	instrumentation.	
UNIT II	2a Enlist components of a self-	2.1 Self-balancing instruments
Pneumatic	balancing instruments.	2.2 Flapper Nozzle Mechanism (For
Instrumentatio	2b Explain self-balancing principle	Revision)
n	of pneumatic instruments with	2.3 Pilot Relay Bleed & Non Bleed
11	neat schematic diagram.	•
		type 2.4 Pressure Regulator.
	=	ε
	working of flapper nozzle system	2.5 Different types of balancing
	with neat diagram.	Principles
	2d State the needs of Pilot relay.	2.5.1 Moment balance
	2e Explain construction and working	2.5.2 Motion balance
	of Pilot relay with schematic	2.5.3 Force balance
	diagram.	2.6 Pneumatic Controllers
	2f Describe construction and	2.6.1 On-Off Controller
	working of pressure regulator	2.6.2 P Controller
	with neat sketch.	2.6.3 I Controller
	2g Explain different types of	2.6.4 P+I Controller
	balancing principle with	2.6.5 P+D Controller
	schematic diagram.	2.6.6 P+I+D Controller
	2h Explain construction and	
	operation of various pneumatic	
	controller with the help of neat	
	sketch. (2.6.1 to 2.6.6).	
UNIT-III	3a Compare electronic and pneumatic	3.1 Electronic Instruments versus
Electronic	instruments.	Pneumatic instruments
Instrumentatio	3b Describe function of electronics	3.2 Electronics instruments
n	instruments. (3.2.1 To 3.2.5) in	3.2.1 Instrumentation amplifier.
	brief.	3.2.2 Integrator.
	3c State uses of listed electronics	3.2.3 Differentiator.
	instruments (3.2.1 to 3.2.3)	3.3 Electronics controllers
	3d Draw general block diagram of	3.6.1 On-Off Controller
	different types of electronic	3.6.2 P Controller
	controller and explain each block	3.6.3 I Controller
	in detail.	3.6.4 P+I Controller
	3e Explain operation of various types	3.6.5 P+D Controller
	of electronic controller with the	3.6.6 P+I+D Controller
	help of op amp circuit diagram	
	(3.6.1 to 3.6.6).	3.4 Controller tuning and alignment.
	3f Define Proportional Band and	3.4.1 Tuning Methods:
1	· · · · · · · · · · · · · · · · · · ·	0

	Offset Error. 3g Draw output response of P, I, D, P+I, P+D, P+I+D for step, pulse, ramp and sinusoid input. 3h State mathematical expression for P, I, D, P+I, P+D, P+I+D control action. 3i List out steps to be followed for controller tuning and alignment. 3j Explain in brief tuning methods for controller.	 Process Reaction Curve (open loop) Ziegler Nichols (closed loop)
UNIT-IV Pneumatic and Electronic transmitters	 4.a Describe need of transmitter. (Concept of field area & control room area). 4.b State types of transmitter. 4.c With the help of neat diagram, describe construction and working of force balance type pneumatic transmitter. 4.d With the help of neat diagram, describe construction and working of motion balance type pneumatic transmitter. 4.e Describe construction and working of force balance type electronic transmitter with the help of neat diagram. 4.f Describe construction and working of Motion balance type electronic transmitter with the help of neat diagram. 4.g State the features of intelligent transmitter. 4.h Draw and explain basic block diagram of smart transmitter. 4.i Compare conventional transmitter with smart transmitter. 	 4.1 Need of transmitter (concept of field area & control room area) 4.2 Types of transmitters Pneumatic Transmitter Electronic Transmitter 4.3 Pneumatic Transmitter 4.3.1 Force Balance Transmitter 4.3.2 Motion Balance Transmitter 4.4 Electronic Transmitters 4.4.1 Force Balance Transmitter 4.4.2 Motion Balance Transmitter 4.4.3 Intelligent and SMART Transmitter
UNIT-V Signal Converters and instrument transformer	 5.a Explain the operation of current transformer with the schematic diagram. 5.b Explain the operation of potential transformer with schematic diagram. 5.c Describe the characteristics of current transformer and potential transformer. 	 5.1 Current Transformer. 5.2 Potential Transformer. 5.3 Converters 5.3.1 Electrical converter Resistance to Current Converter Resistance to Voltage Converter Voltage to Current Converter

5.d Enlist types of converter.	 mV to Current Converter for
5.e Describe the construction and	thermocouples
working of converters (5.3.1).	 AC to DC Converter for mA
5.f Explain the working of Pneumatic	5.3.2 Pneumatic to Electronic (P/I)
to Electronic (P/I) converter with	converter.
the schematic diagram.	5.3.3 Electronic to Pneumatic (I/P)
5.g Explain the working of Electronic	converter.
to pneumatic (I/P) converter with	
the schematic of diagram.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS(THEORY) **7.**

UNIT	TITLE	TEACHING	DISTRIBUTION OF THEORY MARKS			
NO.		HOURS	R	U	A	TOTAL
			LEVEL	LEVEL	LEVEL	MARKS
Ι	Fundamentals of	10	02	08	04	14
	Measurement					
II	Pneumatic	08	02	06	06	14
	Instrumentation					
III	Electronic	08	02	06	06	14
	Instrumentation					
IV	Pneumatic and	08	02	06	06	14
	Electronic					
	transmitters					
V	Signal Converters and	08	02	06	06	14
	instrument					
	transformer					
TOTA	42 10 32 28			70		

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as

given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

SR NO.	UNIT	PRACTICAL EXERCISE (outcomes in psychomotordomain)	APPROXIMATE HRS REQUIRED
1.	I	Measure controller output current using PMMC type instrument.	2
2.	I	Obtain wave form of S.S.G.	2
3.	I	Measure single phase ac voltage using DVM.	2
4.	I	Measure ac load current using DVM.	2
5.	I	Measure dc output voltage of thermocouple using DVM.	2
6.	I	Measure supply frequency using CRO.	2
7.	I	Measure output voltage using CRO.	2
8.	I	Compare two supply frequencies and phase using CRO.	2
9.	I	Compare amplitudes of two signals using CRO.	2
10.	I	Develop lissajous figures on CRO.	2
11.	I	Check function and features of DSO	2
12.	I	Find resistance of a RTD using Wheatstone bridge.	2
13.	I	Find resistance of a RTD using Kelvin double bridge.	2
14.	I	Find Inductance of a given inductor using Maxwell bridge.	2
15.	I	Find Inductance of a given inductor using Anderson bridge.	2
16.	I	Find capacitance of a given capacitor using Desauty's's bridge.	2
17.	II	Test flapper nozzle mechanism.	2
18.	II	Plot input-output characteristics of flapper nozzle system.	2
19.	II	Test output response of pilot relay.	2
20.	II	Set 20 psig Instrument air supply system using pressure regulator.	2 2
21.	II	Control pneumatic control valve using pneumatic P controller.	2
22.	II	Control pneumatic control valve using pneumatic P+I controller.	2
23.	II	Control pneumatic control valve using pneumatic P+D controller.	2
24.	II	Control pneumatic control valve using pneumatic P+I+D controller.	2

		T	
25.	III	Develop a circuit of an electronic integrator using opamp.	2
26.	III	Develop a circuit of an electronic differentiator using	2
20.	111		2
27	TTT	op-amp.	2
27.	III	Build and test Instrumentation amplifier circuit using	2
		op-amp.	
28.	III	Build circuit for instrumentation amplifier to convert	2
		for given input and output value.	
29.	III	Build and test electronic on-off controller using	2
		operational amplifier for step input.	
30.	III	Develop electronic P controller using operational	2
		amplifier for step input.	
31.	III	Develop electronic I controller using operational	2
		amplifier for step input.	
32.	III	Develop electronic P+I controller using operational	2
52.		amplifier for step input	_
33.	III	Develop electronic P+D controller using operational	2
33.	111	amplifier for step input	2
34.	III	Develop electronic P+I+D controller using op amp	2
J-T.	111	for step input.	2
35.	III	1 1	2
33.	111	Tune given electronic controller for optimum output	2
26	13.7	for step input.	2
36.	IV	Install and check functions of pneumatic transmitter	2
37.	IV	Install and check functions of electronic transmitter.	2
38.	IV	Install and check functions of SMART transmitter.	2
39.	V	Develop signal conditioning circuit to convert	2
		resistance to current.	
40.	V	Develop signal conditioning circuit to convert	2
		resistance to voltage.	
41.	V	Develop signal conditioning circuit to convert voltage	2
		to current.	
42.	V	Develop signal conditioning circuit to convert	2
		thermocouple output mV into current.	
43.	V	Plot characteristics of Pneumatic to Electronic	2
	·	converter.	_
44.	V	Observe the output response of Electronic to	2
'''	•	Pneumatic converter for a given input and plot its	–
		characteristics.	
TOTA	Hrs /n	ractical for 56 hours from above representing each unit	88
IUIA	г тиз. (р.		σσ
		may be selected)	

8. SUGGESTED LIST OF STUDENT ACTIVITIES:

- i. Present a seminar on listed technical topics in EPI syllabus.
- ii. Set up electronic apparatus on their own during practical hour under the guidance of lecturer as mini project.

- iii. Debate on merits and demerits of pneumatic and electronic instruments.
- iv. Prepare a poster on any one topic related of course.
- v. Collect the extracurricular information related with the course from internet and share it with other students.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Display animation videos of controller response to different types of Standard inputs.
- ii. Visit to nearby industry to observe realtime electronic and pneumatic loops.
- iii. Facilitate the students to set up practical apparatus on their own.
- iv. Compliment student for his/her work done during the practical in order to motivate him/her.
- v. Regularly check the practical file maintained by student and instruct him/her remedies to improve the work if required.

10. SUGGESTED LEARNING RESOURCES

A.) LIST OF BOOKS

Sr No.	ВООК	AUTHOR	PUBLICATION
1	Instrument Engineers Handbook	Bela G Liptak	ISA
2	Applied Instrumentation in the process industries	W G Andrews H B Williams	ISA
3	Process Control Instrumentation Technology	Curtis D Johnson	РНІ
4	A Course in Electrical and Electronic Measurements and Instrumentation	A K Sawhney	DHANPATRAI
5	Electronic Instrumentation Techniques	W D Cooper	PHI
6	Instrumentation Training Course	D B Taraporewala	D.B. Taraporevala Sons
7	Industrial Instrumentation and Control	S K Singh	TATA MCGRAW HILL
8	Process Instrumentation and Control	A P Kulkarni	Nirali Prakashan
9	Electronics measurement and instrumentation	K. Lal Kishore	Pearson
10	Process dynamics and control	Surekha bhanot	PHI

B.) LIST OF MAJOR EQUIPMENTS/INSTRUMENTS:

- i. Electronic Controller Trainer Kit(on-off, P, I, D, P+I, P+D, P+I+D)
- ii. Function generator(step, pulse, ramp, sine)
- iii. CRO.
- iv. DSO.
- v. DVM
- vi. SMART transmitter.
- vii. mA/mV source.
- viii. Electronic DP transmitter.

- ix. Electronic temperature transmitter.
- x. I to P converter
- xi. P to I converter
- xii. Pneumatic controller trainer Kit(on-off,P, P+I, P+D, P+I+D)
- xiii. Compressor (cut off : 7 kg/cm2)(cut in:3.5 kg/cm2)
- xiv. Pressure regulator (to maintain 20 psig)
- xv. Quarter inch copper pipe (minimum 20 meter per semester)
- xvi. Copper pipe bender and cutter
- xvii. Teflon tape for sealing
- xviii. Multi process control loop using pneumatic control.
 - xix. Multi process control loop using electronic control.
 - xx. Pneumatic & Electronic Calibrator

C.) LIST OF SOFTWARES/LEARNING WEBSITES

- i. Multisim Software
- ii. Ktechlab Software
- iii. Logisim Software
- iv. Jcircuits Software
- v. Circuitmaker Software
- vi. Coolspice Software
- vii. Psimsoftware
- viii. Simone Software
 - ix. Partsim Software
 - x. Docircuits Software
 - xi. www.nptel.ac.in
- xii. logiccircuit software
- xiii. http://www.deltapower.com/wpcontent/uploads/2013/12/pump.pdf
- xiv. http://www.faa.gov/regulations_policies/handbooks_manual

/aircraft/amt_airframe_handbook/media/ama_ch12.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE FACULTY MEMBERS FROM POLYTECHNICS

- **Prof. H. P. Patel** Lecturer(IC), Government Polytechnic, Ahmedabad.
- Prof. N. J. Dehlvi Lecturer(IC), Government Polytechnic, Gandhinagar
- Prof. Manan Modi Lecturer(IC), Government Polytechnic, Palanpur

CO ORDINATOR AND FACULTY MEMBER FROM NITTTR BHOPAL

- Prof. Joshua Earnest. Professor, Department of Electrical and Electronics Engineering
- **Prof. N.P.Patidar.** Professor, Department of Electrical and Electronics Engineering