GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS INSTRUMENTATION-II (COURSE CODE: 3351702)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th Semester

1. RATIONALE

In the present industrial scenario, role of the process instrumentation is becoming more important day by day. More advanced, precise and complex instrumentations are being employed in the industry. Diploma engineers should therefore be able to identify, select, troubleshoot and maintain the different process instrumentation systems. Therefore, this course has been designed so that students will learn to build and test the different types of process instrumentation system required for the parameters such as temperature, level, force, torque, vibration etc.

2. **LIST OF COMPETENCY**

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Operate and Maintain different types of process instrumentation systems.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Selects measurement method for a process parameter by process instruments for temperature level, vibration, force and torque in a process plant.
- ii. Specify instrumentation for temperature level, vibration, force and torque application.
- iii. Identify, describe and Calibrate major instruments for temperature, level, vibration, force and torque in a process plant.
- iv. Test & maintain the components of the main types instruments for temperature level, vibration, force and torque in a process plant.
- v. Draw schematic diagram of process instrumentation for temperature level, vibration, force and torque in a process plant.

Teachi	ng Scher	ne	Total		Exa	mination Scheme			
(In Hou	urs)		Credits	Theory Marks		rks Practical Marks		Total Marilar	
	-		$(\mathbf{L}+\mathbf{I}+\mathbf{P})$					Marks	
L	Т	Р	С	ESE	PA	ESE	PA		
3	0	4	7	70	30	40	60	200	

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In cognitive domain)	
Unit – I	1a. Define heat, temperature.	1.1 Introduction: Heat, Temperature
Temperature	1b. List various temperature scales	1.2 Temperature scales.
Measurement	and relate them.	-
Techniques	1c. Enlist types of expansion	1.3 Expansion thermometer
	thermometer.	1.3.1 Solid Expansion Thermometer
	1d. Enlist application, merits and	•Bimetallic thermometer
	demerits of expansion	Spiral Bimetal element
	thermometer.	Helix Bimetal element
	1e. Explain construction and	1.3.2 Liquid Expansion Thermometer-
	working of following filled	Mercury in Glass type.
	system thermometers: (1) Class	
	I (2) Class II (3) Class III (4)	1.4 Filled system thermometer
	Class V.	1.4.1 Class I-Liquid Filled Systems
	If. Enlist applications, merits and	1.4.2 Class II- Vapour Systems
	dements of filled system	1.4.3 Class III- Gas Filled Systems
	thermometers	1.4.4 Class V- Mercury Filled Systems
	Ig. List sources of error in filled	
	by the system thermometry.	1.5 1 Driver Sector Delvice
	affect immersion affect and din	Thomson
	effect	affact
	1 Describe Seebeck effect Peltier	1.5.2 Thermoelectric laws
	effect and Thomson effect	1.5.2 Cold junction compensation
	1. State and explain thermoelectric	1.5.5 Cold Junction compensation
	laws.	1.5.5 Thermocouple extension wires
	1k. Describe protection,	1.5.6 Thermocouples selection criteria
	installation and importance of	
	thermowell in thermometry	
	11. State positive and negative	1.6 Resistance Temperature Detector
	extension wires used in	Industrial RTD
	following type of	1.6.1 2-wire RTD
	thermocouples: B, E, J, K, R, S,	1.6.2 3-wire RTD
	and T	1.6.3 4-wire RTD
	1m Explain cold junction	
	compensation method used in	1.7 Thermistors
	thermocouple.	
	In Enlist methods used for	1.8 Integrated Circuit (IC) based
	forming thermocouples ends.	Temperature sensors
	10. Define thermopile.	
	Ip. State the criteria for selection	
	1a Classify various thermosouples	1.9 Non-contact type thermometry
	as per ANSI standard	1.9.1 Kaulation pyrometer
	1r Describe the output of	1.9.2 Optical Eibre Thermometry
	thermocounle (mV) converted	1.9.4 Illtrasonic thermometry
	to corresponding temperature	1.7.4 Oluasollic ulefillollieu y 1.9.5 Laser thermometry
	value using thermocouple	1.7.5 Laser mermomeny
	calibration table.	1.10 Temperature switches and
	1s. Describe construction of	thermostats

(In cognitive domain)	
Industrial RTD.	
1t. Explain resistance measuring	
circuit of RTD.(2-wire, 3-wire,	
4-wire bridge circuit)	
1u. State the need of lead wire	
compensation in RTD.	
1v.Describe temperature measuring	
bridge circuit using thermistor.	
1w. Describe performance of a	
thermistor. (Resistance-	
temperature graph).	
1x. Compare output response of	
RTD, Thermistor and	
Thermocouple with sketch.	
1y. Explain Integrated Circuit (IC)	
based temperature sensors.	
Iz.Define emissivity, Black body	
concept, Stefan Boltzmann	
Law.	
and working of non-contact type of	
working of non-contact type of thermometry $(1, 0, 1, 1, 0, 5)$	
1bb State merits and demerits of	
non-contact type thermometer	
1cc List sources of error in Non-	
contact type thermometry.	
1dd. Describe operation of	
Temperature switches and	
thermostats.	
nit – II 2a State units, importance of level 2.1Level measurement: Importance	and
evel measurement in process Units.	
leasurement Industries2.2 Level measurement methods:	
echniques 2b Classify methods of level 2.2.1Direct methods	
•Bob and Tape method	
2c Describe working and •Sight glass method	
construction of level 2.2.2 Indirect methods	
measurement method (2.2 to) •Pressure gauge type	
2.7). •Air bellows.	
20 Emist Applications for various 2.3Capacitance type level measure	ment
2 7) and Radiation type level measurer	nent
2.4Differential pressure type	level
various level measuring 2.5 Ultragania laval datastar	
methods(2.2 to 2.7)	
26 Describe working and 27 Optical Layel detector	
construction of various levels 2.7 Optical Level detector	
switches (2.8) 2.8 Level Switches.	
2.8.1 Float type level switch	
2.8.3 conductivity level switch	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In cognitive domain)	
Unit – III	3a Define transmitter.	3.1Electronic temperature transmitters
Temperature	3b Explain electronic temperature	3.2 Level transmitter
and level	transmitter with neat schematic	3.2.1Differential pressure type level
Transmitters	diagram.	transmitter
	3c List Differential pressure type	•Pneumatic type
	level transmitters.	•Electronic type
	3d Explain working and	3.2.2 Extended diaphragm level
	construction of pressure type	transmitter
	level transmitter with neat	
	sketch (3.2.1-3.2.2).	
	3e Enlist applications of	
	transmitters.	
	3f Describe concept of Zero	
	suppression and Elevation for	
	level transmitter.	
Unit IV	4a Define Force and Torque	4.1Force
Force And	4b State units of Force and Torque	4.1.1Elastic force meters.
Torque	4c Explain working and	4.1.2Load cells
Measurement	construction of listed force	4.2Torque
Techniques	transducers.	4.2.1 Strain gauge torsion meter
2	4d Explain working and	4.2.2 Electrical torsion meter
	construction of listed torque	4.2.3 Mechanical torsion meter.
TT	transducers.	5.1 Wilcontion
Unit – V	5a Define vibration	5.1 Vibration.
vibration .	be Explain working and	5.2 vibration Sensors:
Measurement	(5.2)	5.2.1. Mass spring seismic sensor
rechniques	(J.2) 5. Enlist applications of withration	5.2.2 Piezo-electric sensor
	sensors (5.2)	
4	5d Enlist merits and demerits of	
	vibration sensors (5.2)	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Temperature Measurement	14	1	12	5	21
	Techniques	14	4	12	5	21
II	Level Measurement Techniques	14	4	12	5	21
III	Temperature and level	08	0	10	1	14
	Transmitters	08	0	10	4	14
IV	Force And Torque Measurement	04	2	6	2	10
	Techniques	04	2	0	2	10
V	Vibration Measurement	02	0	2	2	04
	Techniques	02	U	2	2	04
	Total	42	10	42	18	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.	Unit	Practical Exercises					
No.	No.	(Outcomes' in Psychomotor Domain)					
1	Ι	Use liquid in glass type filled system thermometers	02				
2	T	Perform temperature measurement using expansion	02				
2	1	thermometer.					
		Measure temperature of given medium using given	02				
3	Ι	thermocouple with the help of corresponding thermocouple					
		table.(Conversion of millivolt to temperature)					
		Verify the law of intermediate metal for available type of	02				
	1	thermocouple.					
5	т	Test the effect of reference junction temperature on given	02				
5	1	thermocouple.					
6	Ι	Convert output of thermocouple (mV) into temperature(°C)	02				
0		using corresponding thermocouple calibration table					
7	Ι	Measure the temperature using RTD and Test.	02				
8	Ι	Calculate temperature co-efficient of resistance using RTD	02				
0	Ι	Measure the temperature using Thermistors and Plot the	02				
9		characteristic curve.					
10	Ι	Measure the temperature using IC temperature sensor.					
I Measure the temperature of heating element using Opt		Measure the temperature of heating element using Optical	02				
11		Pyrometer.					
10	I Measure the temperature of heating element using radiation		02				
12		Pyrometer.					
13	Ι	Measure the temperature using fiber Optic thermometer.					

Sr.	Unit	Practical Exercises	Hrs.			
No.	No.	(Outcomes' in Psychomotor Domain)	required			
14	Ι	Measure the temperature using thermometer	02			
15	Ι	Measure the temperature using thermometer	02			
16	Ι	Test the operation of temperature switch at given temp	02			
17	II	Measure the level of the tank with the help of the Sight glass	02			
18	п	Measure the level of the tank with the help of the pressure	02			
10	11	gauge.				
19	II	Measure level with the capacitance type transducer.	02			
20	II	Test for the float type level switch				
21	II	Use displacer level switch for given range & Test	02			
22	II	Use capacitance type level switch for given range & Test	02			
23 III		Use Electronic Temperature transmitters for given range &				
		Test.				
24	Ш	Use differential pressure type level transmitter for given range	02			
		& Test.				
25	25 IV Measure torsion by electrical torsion meter		02			
26	IV Use load cell and test for perfomance		02			
27	27VMeasure vibration by vibration analyser.					
* Note	* Note: These experiments can be either conducted using hardware from					
covering all the Units . Total						

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Industrial Visit for students (chemical industries, petroleum industries, production industries)
- ii. Small technical projects based on theory topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES

- i. Videos/Animation for different devices should be shown.
- ii.Seminar on relevant topics.

10. SUGGESTED LEARNING RESOURCES

A) List of Books

Sr. No.	Title of Book	Author	Publication
1.	Process Measurement and Analysis	Liptak, B. G.	I.S.A
2.	Industrial Instrumentation	Eckman, D. P.	Wiley Eastern Limited, New Delhi
3.	Industrial Instrumentation	Singh, S.K.	Tata Mc Graw Hill, New Delhi
4.	Mechanical Measurements	Kumar, D. S.	Metropolitan Book Company, New Delhi
5.	Process Instrumentation and Control	Kulkarni, A.P.	Nirali Prakashan, Pune

6.	Mechanical and Industrial measurements	Jain, R.K.	Khanna publication, New Delhi
7.	Industrial Instrumentation	Krishnaswamy, K. and S. Vijayachitra,	New Age International Publication, New Delhi

B) List of Major Equipment/ Instrument with Broad Specifications

- i. Function generator(sine, square, triangle etc. with frequency range 10 Hz to 100 kHz)
- ii. DC power supply ($-30 \rightarrow 0 \rightarrow +30$ V with at least 1A current capacity)
- iii. Measuring equipments like CRO (preferably dual channel, 20Mhz)
- iv. Multi meter
- v. Electrical tool kit.
- vi. Circuit/Trainer board/ Demonstration modules of Thermocouples , RTDs, Thermistors, IC temperature sensor.
- vii. Temperature Switches, Optical Pyrometer, Radiation Pyrometer
- viii. Sight Glass type Level Indicator
- ix. Pressure Gauge type Level Indicator
- x. Float type, Displacer type and Capacitance type Level Switches
- xi. Fiber Optic Thermometer, Ultrasonic Thermometer, Laser Thermometer
- xii. Capacitance type Level Transducer
- xiii. Electronic Temperature transmitters
- xiv.Differential pressure type Level Transmitter
- xv. Universal Calibrator
- xvi. Air Compressor
- xvii.Load Cell
- xviii.Vibration Analyzer
- xix. Electrical Torsion Meter
- xx. metal detector
- xxi. ultrasonic flaw detector

C) List of Software/Learning Websites

- i. http://www.pc-education.mcmaster.ca/Instrumentation/temperature.
- ii. http://www.pc-education.mcmaster.ca/Instrumentation/level.
- iii. http://www.dugantech.com/Product_Group-Temperature/Technical%20Articles/TE Criteria%20for%20Selection%20of%20RTD%20or%20TC%20industrial%20apps.pdf
- iv. books.google.co.in/books?isbn=8122416691
- v. Capacitive Displacement/Vibration Measurement Sensor Products
- vi. Eddy-Current Displacement/Vibration Measurement Sensor Products

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- Prof. R. J. Dhruv Sr. Lecturer , A.V.P.T.I. Rajkot
- Prof. S. Z. Shyara Sr. Lecturer, A.V.P.T.I. Rajkot
- **Prof. R. P. Raiyani** H.O.D I.C Christ Polytechnic Institute, Rajkot.
- Prof. H. P. Patel Lecturer, Government Polytechnic, Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. (Dr) Joshua Earnest.** Professor, Department of Electrical and Electronics Engineering
- **Prof. (Dr) N. P. Patidar.** Professor, Department of Electrical and Electronics Engineering