GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ANALYTICAL INSTRUMENTATION (COURSE CODE: 3351703)

Diploma Programmers in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	5 th Semester

1. RATIONALE

The use of Analytical instruments is increasing day by day in industries. Now a day's advanced, complex and precision analytical instruments are being used in most of the process industries. Diploma Instrumentation engineer are therefore also supposed to know about analytical instrumentation fundamentals, It is important as the students may get employment in the process plant, where they will have to operate, maintain and calibrate different analytical instruments. Hence this course has been designed to develop some of the basic skills in operation and maintenance of various analytical instruments.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop required skills so that students are able to acquire following competency:

• operate and maintain various analytical instruments.

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Observe and obtain the accurate reading of analytical instruments.
- ii. Specify analytical instrumentation for different types of analysis.
- iii. Identify and describe major analytical instruments.
- iv. Describe the purpose and function of analytical instrumentation
- v. Identify the main installed and laboratory analytical instruments.
- vi. Identify sub components of the main analytical instruments
- vii. Draw schematic diagram of analytical instrumentation
- viii. Test and calibrate different analytical instruments

4. TEACHING AND EXAMINATION SCHEME

Teac	hing Sch	eme	Total	Examination Scheme								
(]	(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks					ctical rks	Total Marks
L	Т	P	C	ESE	PA	ESE	PA					
3	0	2	5	70	30	20	30	150				

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
Unit – I Fundamental s of Analytical Instruments	 1a Define analytical instrumentation. 1b Explain importance of composition analysis in process industries. 1c Draw and explain elements of an analytical instrument. 1d List Application of composition analysis. 1e Classify analytical instruments based on properties that are utilized in the analysis. 	 1.1 Introduction 1.2 Elements of an analytical instruments 1.3 Applications of chemical composition measurement in industries 1.4 Classifications of analytical instruments based on properties
Unit – II Analysis using Mechanical and Thermal properties	 Define the following terms: Viscosity, Fluidity, Kinematic Viscosity, Specific viscosity, Relative Viscosity and Viscosity Index. State the units of viscosity. State the methods of viscosity measurement techniques. Explain principle, construction and working of Saybolt 's viscometer. Define density and specific gravity. State the unit of density and specific gravity Enlist types of density measurement techniques. Describe working principle, construction with schematic diagram of Density and Specific Gravity measurement techniques . - pressure head type densitometer - displacer type densitometer - float type densitometer - buoyancy effect type densitometer 	2.3.1 Principle 2.3.2 Dual hot wire thermal conductivity cell.

Unit	Major Learning Outcomes	Topics and Sub-topics
Cint	(Outcomes in Cognitive Domain)	Topics and Sav-topics
	2i State principle of thermal	
	conductivity for gas analysis.	
	2j Draw and explain the dual hot wire	
	thermal conductivity cell.	
	2k List and explain different	
	techniques of filling gas to therma	1
	conductivity cell.	
Unit – III	Ba Define the following terms	3.1Electrical Conductivity analyze
Analysis using	conductivity, conductance, cell	3.1.1 Introduction and
Electrical	constant.	applications.
properties	3b Draw and explain null method of	3.1.2 Methods of measurement of
	conductance measurement.	conductance:
	3c Draw and explain direct reading	null method
	method of conductance	 direct reading method
	measurement.	3.1.3 Conductivity cell
	3d Explain working principle of	• Temperature compensation in
	conductivity cell.	conductivity measurement
	Be Explain Temperature compensation	3.2 pri anaryzer
	in conductivity measurement.	3.2.1 Principle of pH
	3f Define pH, Dissociation constant	measurement.
	Kw, pH range, Buffer solution,	3.2.2 Electrodes for pH
	Slope factor.	measurement.
	3g Explain principle of pH measurement with neat diagram.	3.2.3 Electronics circuit for pH
	3h Draw relationship between pH and	measurement.
	emf at different temperatures.	o.z cumorumon
	3i Describe measuring electrode (glas	3.3 O2 Analyzer
	electrode) for pH measurement wi	41
	schematic diagram.	dame ben type
	3j Describe reference electrode	wind type3.3.2Heat of reaction analyzer
	(Calomel & Ag/AgCl ₂ electrode)	3.3.3Dissolved O2 analyzer.
	for pH measurement with schemat	ic 3.4Polarography
	diagram.	-electrodes DME (Dropping
	3k Describe combination electrode for	Mercury Electrode), SCE (
	pH measurement with schematic	Saturated Calomel Electrode)
	diagram.	Sucurated Caromer Electrode)
	31 List and explain failures in ph	
	meter.	
	3m List calibration & maintenance	
	steps for pH meter	
	3n Explain electronics circuit for pH	
	meter.	
	30 List techniques of O ₂ analyzer.	
	3p Explain principle, working and	
	construction of dumb-bell type	
	paramagnetic O ₂ analyzer.	
	3q Explain with schematic diagram the	
	principle, working and construction	11
	of	
	-wind type paramagnetic O ₂	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
	analyzer	
	-dissolved O2 analyzer .	
	3r List types of Polarography.	
	3s Explain basic polarographic set up.	
	3t Explain with schematic diagram the	
	construction, working principle of	
	electrodes DME, SCE	
Unit – IV	4a Define electromagnetic radiation,	4.1 Electromagnetic radiation
Analysis	Absorption spectroscopy.	4.1.1 Electromagnetic spectrum
using radiant	4b Draw electromagnetic spectrum.	4.1.2 Interaction of radiation
properties	4c Explain interaction of radiation	with matter.
	with matter.	4.2 Laws relating to Absorption of
	4d State Lambert's law	radiation.
	4e State Beer's law	4.2.1 Lambert's law
	4f State Beer- Lambert's law	4.2.2 Beer's law
	4g Draw and explain working	4.2.3 Beer- Lambert's law
	principle with schematic diagram	4.3 Absorption instruments
	in brief various components of	4.3.1Colorimeters (photometer)
	absorption instruments	4.3.2Spectrophotometer
	4h Draw and explain basic	4.3.3X-ray technique of analysis
	components of a filter colorimeter.	by absorption.
	4i Explain working principle with	4.3.4 X-ray technique of analysis
	schematic diagram the single	by diffraction.
		l •
	beam optical null type	4.4 Nuclear Magnetic
	spectrophotometer.	Resonance(NMR)
	4j Explain principle construction and	4.4.1Principle.
	working of X-ray absorption	4.4.2Block diagram.
	scheme.	
	4k Enlist the application of X-ray	
	absorption spectrometer.	
	41 Explain principle, construction and	
	working of X-ray diffraction	
	scheme.	
	4m Explain principle of NMR.	
	4n Explain block diagram of	
Unit –V	NMR spectrometer.	5.1. Cas abromata anomb
Analysis	5a Define Gas chromatography.5b List basic parts of Gas	5.1 Gas chromatography
using	chromatograph.	5.1.1 Basic parts 5.1.2 detectors
miscellaneou	5cDraw and explain block diagram of	
s properties	a Gas chromatograph.	•thermal conductivity detector
b brobernes	5d List detectors used in Gas	•flame ionization detector(FID)
	chromatograph.	•flame photo detector(FPD)
	5e Explain working principle with	•Electron Capture Detector (
	schematic diagram detectors for	ECD)
	Gas chromatograph	5.2 Refractometer
	- thermal conductivity	5.2.1Theory of operation
	- flame ionization detector	5.2.2Classify Refractometer
	- flame photo detector	Differential type
	- Electron Capture Detector	➤ single pass refractometer
	5f List applications of Gas	➤ two pass refractometer

Unit	Major Learning Outcomes	Topics and Sub-topics
	(Outcomes in Cognitive Domain)	
	chromatograph.	 critical angle refractometer
	5g Explain theory of operation of	
	refractometer.	
	5h Define refractive index, snell's	
	law, critical angle.	
	5i Classify refractometer.	
	5j Describe single pass refractometer	
	with neat sketch.	
	5k Describe two pass refractometer	
	with neat sketch.	
	51 Describe critical angle	
	refractometer with schematic	
	diagram.	
	5m State the limitation of	
	refractometer.	
	5n List applications of refractometer.	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	it Unit Title Teaching Distribu			ibution o	bution of Theory Marks		
No.		Hours	R	U	A	Total	
			Level	Level	Level	Marks	
I	Fundamentals of Analytical	4	2	4	0	06	
	Instruments	•		7	O	00	
II	Analysis using Mechanical and	6	2	6	4	12	
	Thermal properties		2	U	4	12	
III	Analysis using Electrical properties	12	4	12	4	20	
IV	Analysis using radiant properties	12	4	12	4	20	
V	Analysis using miscellaneous	08	4	6	2	12	
	properties	08	+	U	2	12	
	Total	42	16	40	14	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's Revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

C N	Unit	Practical Exercises	Hrs.
S. No.	No.	(Outcomes' in Psychomotor Domain)	required
1	II	Measure viscosity of given solution using viscometer.	02
2	2 II Plot effect of temperature on viscosity of given solution by		02
2		Saybolt viscometer.	
3	II	Measure density of given solution using Pressure head	02
3		type densitometer.	
4	II	Measure density of given solution using displacer type	02
	***	densitometer.	0.2
5	II	Measure density of given solution using float type	02
	***	densitometer.	0.0
6	II	Measure density of given solution using buoyancy effect	02
	777	type densitometer.	0.2
7	III	Measure conductivity of given solution using analog	02
	TIT	multimeter.	00
8	III	Measure conductivity of given solution using digital	02
	111	conductivity meter.	02
9	III	Plot effect of temperature on conductivity of given	02
10	III	aqueous solution Test and calibrate pH meter.	02
10	III	Measure pH of given solution using double electrode	02
11	111	method.	02
	III	Measure pH of given solution using combination	02
12		electrode method.	-
ıa III		Plot the effect of temperature on pH of given aqueous	02
13		solution	
14	III	Test and calibrate dumb-bell type O ₂ analyzer. 02	
15	III	Test and calibrate wind type O2 analyzer. 02	
16	III	Measure O_2 concentration in given gas mixture.	02
17	III	Prepare electrode and measure dissolved O ₂ concentration	02
1 /		in given sample.	
18	III	Water analysis using water analyzer	02
19	IV	Verify Beer-Lambert's law using Trainer kit.	02
20	IV	Analyze given sample using colorimeter.	02
21	IV	Test and calibrate spectrophotometer.	02
22	IV	Measure % transmission, absorption and concentration of	02
		given sample using spectrophotometer.	
23	V	Study of each part of gas chromatograph	02
24	V	Analyze given gas mixture using gas chromatograph.	02
25	V	Measure refractive index using refactometer.	02
26	V	Analyze given sample using refactometer.	02
	_	1 for 28 hours from above representing each unit may be	52
selected)			

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare presentation on relevant topics.
- ii. Prepare chart/model on relevant topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Visit to Industries/ Process and CSMRI type laboratories/ industries
- ii. Video films/animation films on working of different types of analytical instruments.
- iii. Mini project

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S. No.	Title of Book	Author	Publication
1.	Hand book of Analytical Instruments	R.S. Khandpur	Tata McGraw Hill, New Delhi
2.	Analytical Instrumentation	Bela G. Lipkat	Chilton book company
3.	Principle of industrial instrumentation	D. Patranabis	Tata McGraw Hill, New Delhi
4.	Process instrumentation and control	A.P. Kulkarni	Nirali Prakashan,pune
5.	Instrumental methods of analysis	H.H. Willard	CBS Publishers & Distributers

B) List of Major Equipment/ Instrument with Broad Specifications

- i.Saybolt viscometer
- ii.Pressure head densitometer.
- iii.Displacer type densitometer.
- iv. Buoyancy effect type densitometer.
- v.Float type densitometer.
- vi.Conductivity meter.
- vii.Double Electrode pH meter.
- viii.Combination Electrode pH meter.
- ix.Dumbbell type O2 analyzer
- x. Wind type O2 analyzer
- xi.Dissolved O2 analyzer.
- xii. Trainer kit for Beer-Lambert's law
- xiii.Ploarograph with DME, SCE cells & Required Hg quantity
- xiv.Gas Chromatograph
- xv.Colorimeter
- xvi.Laboratory Refractometer
- xvii.Water analyzer
- xviii.Spectrophotometer

C) List of Software/Learning Websites

Gas chromatography:

- i. http://www.sigmaaldrich.com/analytical-chromatography
- ii.<u>http://www.slideshare.net/banuman35/applications-of-gas-chromatography-applications-of-gc-by-pravisankar</u>

Rfractrometer:

- iii.http://www.intercomir.it/laboratorio/rifrappl_en.html
- $iv. \underline{http://www.misco.com/refractometer-support/refractometer-forum/refractometer-applications}$

Spectrophotometer:

V.http://www.slideshare.net/suniu/spectrophotometry-16091660

pH meter

vi.http://www.wikihow.com/Calibrate-and-Use-a-pH-Meter

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof . R.P. Merchant, HOD(IC) Govt. Polytechnic, Gandhinagar.
- Prof. J. T. Patankar Sr. lecturer IC Engineering, Govt. Polytechnic, Ahmedabad
- Prof. A.K. Bula Sr. lecturer IC Engineering, Govt. Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. Joshua Earnest.** Professor, Department of Electrical and Electronics Engineering
- **Prof. N.P.Patidar.** Professor, Department of Electrical and Electronics Engineering