GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: VLSI (COURSE CODE: 3361104)

Diploma Programme in which this course is offered	Semester in which offered
Electronics and Communication Engineering	Sixth

1. RATIONALE

Digital integrated circuits are integral part of electronic equipment/gadgets starting from small toys to complex computer systems including personal digital assistants, mobile phones and Multimedia agents. This course will enable the students to acquire the basic skills to develop codes for VLSI circuits through VHDL programming. This course will also enable them to use FPGA and ASIC chips for design and development of various applications. Thus this course is an advance but very useful course for electronic engineers.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Develop codes through VHDL programming for VLSI based electronic systems

3. COURSE OUTCOMES

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

- i. Maintain MOS based systems
- ii. Maintain MOS inverters
- iii. Maintain MOS circuits
- iv. Develop VHDL Programs related to Combinational circuits
- v. Develop VHDL Programs related to Sequential circuits

4. TEACHINGAND EXAMINATION SCHEME

	ching So In Hou		Total Credits (L+T+P)	Theory	Exa Marks	<u>mination S</u> Practical		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	2	6	70	30	20	30	150

Legends: L- Lecture; T- Tutorial/Teacher Guided Student Activity; P - Practical; C -Credit; ESE-End Semester Examination; PA –Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I.	1a. Describe of design methodologies	1.1 VLSI design flow, Y chart,
Digital	and detail of Y Chart.	Practical design flow
System and	1b Describe different domain and	1.2 Design Hierarchy-Structural
MOS	Define different terms regarding	Decomposition in the physical
Transistor	design Hierarchy.	(geometrical) domain
	1c Explain the types of FPGA	1.3 FPGA, Gate Array Design,
	Technology.	Standard Cell Based Design,
		Full Custom Design
	1d Explain Energy Band Diagram	1.4 MOS structure
	and Structure of MOS	
	1e Explain effect of external bias on	1.5 MOS system under external
	two terminal MOS device with	bias
	energy band diagram.	
	1f Explain Formation of channel with	1.6 Structure and operation of
	different symbols of MOSFET.	MOSFET transistor
	1g Explain gradual channel	1.7 MOSFET current- voltage
	approximation.	Characteristics
TT 14 TT		
Unit– II MOS	2a Explain the working of MOS Inverter	2.1 MOS Inverter : concept and
MOS		working
Inverters	2b Explain operation of resistive load inverter without mathematical	2.2 Resistive load Inverter
	derivation of V_{OL} , V_{OH} , V_{IL} , V_{IH} , V_{IL} (Write Only Final Equation)	
	V _{TH.} (Write Only Final Equation). 2c Describe inverter circuit with	2.2 Investor with a type MOSEET
	saturated and Linear Enhancement	2.3 Inverter with n-type MOSFET Load, Enhancement load
	and Depletion type load.	NMOS, Depletion Load
	2d Compare enhancement load	NMOS, Depiction Load
	NMOS and Depletion Load	2.4 Enhancement load and
	NMOS and Depiction Load	Depletion Load NMOS
	2e Explain CMOS Inverter with	2.5 CMOS Inverter: Circuit
	Different Operating Modes of	operation and description
	nMOS and pMOS transistor.	2.6 Cascaded CMOS Inverter
	2f Describe the working of Cascaded	stages
	stages	suges
Unit– III	3a Explain two input NAND and	3.1 Combinational MOS Logic
MOS	NOR Gate with depletion NMOS	Circuits.
Circuits	load.	
	3b Explain Two input NAND and	3.2 CMOS logic circuits
	NOR Gate using CMOS logic.	
	3c Differentiate AOI and OAI Logic.	3.3 Complex logic circuit
	3d Design simple XOR function.	
	3e Describe the working of SR latch	3.4 Sequential MOS circuit
	circuit.	3.5 VLSI Technology-Environment
	3f Distinguish Clocked latch and	& Processes in brief
	Flip-Flop circuit.	

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit-IV	4a Introduction to VHDL	4.1 Data flow, behavioural,
Introduction	Programming methodology	structural
to VHDL	4b Develop VHDL Programs	4.2 Logic operations viz. AND,OR,
	related to basic logic gates.	NOR,NAND,NOT,EXOR,
		EXNOR etc.
	4c Develop VHDL Programs	4.3Adder and Subtractor.
	related to Fundamental	
	Arithmetic operations.	
Unit-V	5a. Develop VHDL Programs related to	5.1 Combinational circuits-
VHDL	Combinational circuits.	Multiplexer and De
Programming		multiplexer, Decoder and
		Encoder.
		5.2 4 bit Parallel Adder.
		5.3 Parity Generator and parity
		checker.
	5b. Develop VHDL Programs related to	5.4 Basic sequential circuits- SR,
	Sequential circuits.	D Latch, RS, T, JK Flip flop
		5.5 Parallel input Parallel output
		Shift Register, Up Counter,
		Down Counter

6 SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Digital System and MOS	8	4	6	6	16
	Transistor					
II	MOS Inverters	12	4	4	6	14
III	MOS Circuits	12	5	5	8	18
IV	Introduction to VHDL	12	4	4	4	12
V	VHDL Programming	12	3	3	4	10
Total		56	20	22	28	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7 SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes**

related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes' in Psychomotor Domain)	Approx. Hours Required	
1	IV	Identify VHDL entities and coding styles.	2	
2	IV	Simulate the Basic logic gates using VHDL.	2	
3	IV	Simulate the Universal logic gates using VHDL	2	
4	IV	Simulate X-OR and X-NOR logic gates using VHDL	2	
5	IV	Simulate Half Adder using VHDL	2	
6	IV	Simulate Full Adder using VHDL	2	
7	IV	Simulate Half Substracter using VHDL	2	
8	IV	Simulate Full Substracter using VHDL	2	
9	V	Simulate 4 : 1 mux using VHDL	2	
10	V	Simulate 1:4 de-mux using VHDL	2	
11	V	Simulate 3 : 8 decoder using VHDL	2	
12	V	Simulate 8 : 3 encoder using VHDL	2	
13	V	Simulate SR flip-flops using VHDL		
14	V	Simulate D flip-flops using VHDL 2		
15	V			
16	6VSimulate T flip-flops using VHDL2		2	
17	V			
18	V	Simulate 4 bit Up counter using VHDL	2	
19	V	Simulate 4 bit Down counter using VHDL	2	
20	V	Simulate any three above listed programs using Structural coding method	2	
21	V	Hardware implementation of all above listed program	2	
	Total Hours (perform any of the practical exercises for a total of minimum42			
	28 hours from above list depending upon the availability of resources so that			
skills	skills matching with the most of the outcomes in the every unit is included)			

8 SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Survey Current requirement for Hardware/ Chip at your Company/ Department/ Institute.
- ii. Identify basic Circuits etc.
- iii. Project- Build a small ASIC for your Home /Community.
- iv. Enhance features and components of your ASIC by providing more Hardware.
- v. Visit industries where equipment/gadgets using VLSI are being manufactured/assembled.

9 SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show Video/ Animation film explaining VLSI Design which are available on internet.
- ii. Arrange expert lecture on VHDL programming for real life applications.

4

10 SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1.	CMOS DIGITAL INTEGRATED CIRCUITS	Sung Mo Kang	ТМН
2.	Introduction to VLSI Circuits and Systems.	Uyemura J.P.	WILEY INDIA PVT. LTD.
3.	VLSI DESIGN	Das Debaprasad	OXFORD
4.	VLSI DESIGN Theory and Practice	Vij Vikrant,Er. Syal Nidhi	LAXMI PUBLICATIONS PVT. LTD.
5.	Circuit design with VHDL	Pedroni V.A.	PHI
6.	VHDL Modelling of systems	Znawabi	ТМН
7.	VHDL Programming by Example	Perry Douglas L.	MGH
8.	VHDL design	Bhaskar J	Pearson
9.	VLSI Technology	Chang C.Y. and Sze S. M.	McGraw Hill

B) Major Equipment/Instruments with Broad Specifications

- i. Computer System
- ii. VLSI Trainer Kits
- iii. VHDL Simulator Software

C) Software/Learning Websites

- i. QUARTUS-II-ALTERA EVAL VERSION
- ii. ModelSim® HDL simulator for use by students in their academic coursework.
- iii. ISE Simulator
- iv. http://www.youtube.com/watch?v=9SnR3M3CIm4

11 COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. K N Vaghela, Sr. Lecturer in EC, Govt. Poly, Ahmedabad
- Prof. U V Buch, Sr. Lecturer in EC, Govt. Poly for Girls, Surat
- **Prof. J D Chauhan**, Lecturer in EC, Band B Poly, V. V. Nagar
- Prof. L J Vora, Lecturer in EC, Govt. Poly, Vadnagar

Coordinator and Faculty Members from NITTTR , Bhopal

- **Prof. Sanjeet Kumar**, Assistant Professor, Department of Electrical and Electronics Engineering.
- **Dr. Anjali Potnis**, Assistant Professor, Department of Electrical and Electronics Engineering