GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL POWER CONTROL (COURSE CODE: 3361702)

Diploma Programme in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

In the present industrial scenario, role of the industrial power control instrumentation is becoming more important day by day. More advanced, precise and complex power control circuits and techniques are being employed in industry. Diploma engineers should therefore be able to identify, classify, troubleshoot and maintain the different industrial power control instrumentation systems. Therefore, this course has been designed so that students will learn to test, build, wire and troubleshoot the different types of industrial instrumentation circuits and components required for power plants mainly for the process parameter such as speed, level, pressure, frequency, phase, temperature, flow etc.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Maintain different types of industrial power control instrumentation system.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes:

- i. Select relevant power control devices for the given industrial applications.
- ii. Troubleshoot AC and DC power control circuits employing power devices.
- iii. Troubleshoot inverter, chopper circuits.
- iv. Maintain AC and DC drives.
- v. Maintain Resistance welding equipment.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total Credits		Exa	amination Scheme				
	(In Hou	urs)	(L+T+P)	Theory Marks		(+T+P) Theory Marks		Pra Ma	ctical arks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	200		
3	0	4	7	70	30	40	60	200		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I. Power Semiconduct or Devices	 (in cognitive domain) 1a. Describe working of SCR, MOSFET and IGBT with the help of sketches. 1b. Analyze the characteristic curves of SCR, DIAC, TRIAC, PUT, IGBT and MOSFET. 1c. Explain SCR two transistor analogy and derive anode current equation. 1d. Explain the turn ON methods of thyristor (SCR) (triggering methods). 1e. Explain the turn OFF methods of SCR - commutation techniques of SCR. 1f. Describe working of snubber circuit for SCR. 1g. Compare the (features) characteristics 	1.1.Industrialelectronicsdevices:SCR,DIAC,TRIAC,PUT,MOSFET,IGBT1.2.TriggeringmethodsofSCR1.3.Commutationtechniques of SCR.1.4.Snubbercircuit,freewheeling of SCR.
Unit– II Power Converter and Cyclo Converter	 of SCR, TRIAC, MOSFET and IGBT. 1h. Describe construction and working of Opto- Isolators. 1i. Describe construction and working of Opto-SCR. 2a. Explain working of half and full control bridge converter with resistive load. 2b. Explain working of Half and Full wave control bridge converter with R-L L and 	 1.5. Opto electronic devices concept. 1.6. Opto-Isolators, Opto-SCR. 2.1. Control Converter using SCR.
	 2c. Explain the working principle of single phase Bridge Cyclo-converter. 2d. Explain the working principle of single phase Mid-point Cyclo-converter. 	2.2. Cyclo-Converter using SCR.
Unit– III Inverters and Choppers	 3a. Explain the Principle and working of Series Inverter circuit. 3b. Explain the Principle and working of Parallel Inverter circuit. 3c. Explain the Principle and working of bridge type Inverter circuit. 	3.1 Inverters: Series, Parallel and Bridge inverters.
	 3d. Explain Basic D.C. chopper circuit. 3e. Explain the working principle of step up Chopper circuits. 3f. Explain the working principle of step down Chopper circuits. 	 3.2 Chopper: 3.2.1 Classification of chopper. 3.2.2 Step-up. 3.2.3 Step Down.

Unit	Major Learning Outcomes Tonics and Sub-tonics
Omt	(in cognitive domain)
Unit IV	An Describe Speed control of D.C. Motor <u>4.1</u> Speed control methods for
Unit I v Industrial	using armature voltage control with 4.1 D C motor
Application	aircuit 4.1.2 Induction motor
Application	Circuit. 4.1.2 Induction motor 4h Describe statement water
of Power	4b. Describe stator voltage speed control 4.1.3 Stepper motor
Electronics	for induction motor with circuit. 4.2 Industrial Applications.
Devices	4c. Describe stepper motor drive circuit. 4.2.1 D.C. static switch.
	4d. Explain application like D.C. static switch, alarm circuit.4.2.2 Alarm circuit.4.2.3 Temperature
	4e. Explain circuit diagram for control.
	Temperature control using mercury 4.2.4 Liquid level control.
	thermostat. 4.2.5 Ambient Light
	4f. Explain conductive Liquid level control
	control circuit.
	4g. Explain Ambient Light control power
	switch.
	4h. Describe function of single phase AC 4.3 Single phase AC power
	power control circuit using DIAC- control using DIAC-
	TRIAC with neat diagram. TRIAC.
	4i. Describe function of DC power 4.4 UJT Triggered SCR
	control circuit using SCR with UJT in power control.
	triggering circuit with circuit diagram.
Unit-V	5a. Describe types of Resistance Welding. 5.1 Resistance Welding.
Resistance	5b. Explain the terms related to resistance 5.1.1 Classification: spot
Welding	welding. butt. seam.
Control	5c. Explain duty cycle for resistance projection, flash.
	welding process. 5.1.2 Duty cycle.
	5d. Explain basic circuit for resistance 5.1.3 Resistance welding
	welding process. scheme.
	5e. Explain SCR electronic line contactor 5.1.4 Electronics Line
	circuit. contactor.
	5f. Explain heat control using UJT and 5.1.5 Heat control
	SCR. circuit.
	5g. Explain electronics circuit for weld 5.1.6 Sequence Timer.
	control sequences. 5.1.7 Energy storage
	5h. Describe energy storage welding. welding.
	5i. Compare resistance and conventional 5.1.8 Comparison of
	welding Process. welding methods.

Unit No.	Unit Title	tle Teaching Distrib		bution of	oution of Theory Marks			
		Hours	R	U	Α	Total		
			Level	Level	Level	Marks		
Ι	Power Semiconductor Devices	8	6	8	4	18		
II	Power converter and Cyclo	8	2	4	8	14		
	Converter	0	-	•	0	11		
III	Inverters and Choppers	8	2	4	4	10		
IV	Industrial Application of Power	10	1	10	Λ	18		
	Electronics Devices	10	-	10	-	10		
V	Resistance Welding Control	8	4	4	2	10		
	Total	42	18	30	22	70		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (Theory)

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hours required
1	Ι	Test V/I Characteristics of SCR.	02
2	Ι	Test V/I Characteristics of DIAC.	02
3	Ι	Test V/I Characteristics of TRIAC.	02
4	Ι	Test Characteristics of Opto-Isolator.	02
5	Ι	Test Characteristics of power MOSFET.	02
6	Ι	Test Characteristics of UJT.	02
7	Ι	Test R-C phase shift control of SCR using UJT.	02
8	Ι	Test outputs of PUT as relaxation oscillator using MULTISIM.	02
9	Ι	Test outputs of Class A Load Commutation using MULTISIM.	02
10	Ι	Test outputs of Class A Load Commutation using physical components.	02

Sr. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	
11	I Test outputs of Class B Resonant Pulse Commutation using MULTISIM.		02
12	Ι	Verify outputs of Class B Resonant Pulse Commutation using physical components.	02
13	Ι	Test outputs of Class C Complementary Commutation using MULTISIM.	02
14	Ι	Test outputs of Class C Complementary Commutation using physical components.	02
15	Ι	Test outputs of Class D Impulse or Auxiliary SCR commutation using MULTISIM.	02
16	Ι	Test outputs of Class D Impulse or Auxiliary SCR commutation using physical components.	02
17	Ι	Test outputs of Class F Line or natural Commutation using MULTISIM.	02
18	Ι	Test outputs of Class F Line or natural Commutation using physical components.	02
19	II	Test Half control bridge converter.	02
20	II	Test Full control bridge converter.	02
21	III	Test parallel inverter using two SCRs	
22	III	Test basic operation of series Inverter.	02
23	III	Test chopper circuits with load.	
24	IV	IV Test speed control of A.C. Motor using DIAC-TRIAC.	
25	IV	IV Test D.C motor speed control using chopper.	
26	IV	Test alarm circuit using MULTISIM.	
27	IV	Test D.C Static switch using MULTISIM.	02
28	V	Test Sequential Timer operation using IC-555 for resistance welding process.	02
		Total	56

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Do assignments related theory topics.
- iii. Learn troubleshooting techniques and steps to troubleshoot DC motor, AC motor.
- iv. Learn troubleshooting steps to troubleshoot inverter.
- v. Check the performance of chopper, inverter using simulation software like MATLAB.
- vi. Visit industries such as chemical industries, petroleum industries, production industries, manufacturing industries, automobile industries, power Industries etc. and study various instruments used.
- vii. Take up a small technical projects based on any advance theory topic.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film to demonstrate the working principles, constructional features, testing and maintenance of different types of power control devices.
- ii. Use Flash/Animations to explain the working of different DC, AC and stepper motor.

- iii. Arrange Industrial Visit for students (chemical industries, petroleum industries, production industries, Manufacturing industries, Automobile industries, Power Industries)
- iv. Ask students to explore internet about recent developments and prepare seminar presentations on relevant topics.
- v. Give mini technical projects based on advance theory topics.
- vi. Arrange expert lectures of instrumentation engineers working in industries.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1	Industrial Electronics	Bhattacharya S K and	TMH Publication, New Delhi
1.	and Control	Chatterjee S.	
2	Power Electronics	Singh M D and	TMH Publication, New Delhi
۷.		Khanchandani K.B.	
2	Power Electronics And	Jain Alok	Penram International
3.	Its Applications		Publication, New Delhi
4	Power Electronics	Bimmhra B S	Khanna Publication,New
4.			Delhi
F	Industrial Electronics	Paul Biswanath	PHI Learning New Delhi
5.	And Control		
	Power Electronics-	Rai Harish C.	Galgotia Publication,New
6.	Devices, Circuits,		Delhi
	Systems And		
	Applications		

B) Major Equipment/ Instrument with Broad Specifications

- i. Function Generator: Sine, square, triangle Wave etc. with frequency range 10 Hz to 100 kHz
- ii. DC power supply: $-30 \rightarrow 0 \rightarrow +30$ V with at least 1A current capacity.
- iii. Dual channel CRO: At least 20MHz or higher
- iv. Multi meter: Capable of measuring AC and DC current, voltage and resistance.
- v. Electrical tool kit: Maintenance of trainer boards.
- vi. Circuit/Trainer board/ Demonstration modules: For performing relevant practical's with inbuilt power supply

C) Software/Learning Websites

- i. www.nptel.iitm.ac.in.
- ii. www.youtube (lectures on Power electronics)
- iii. www.howstuffworks.com.
- iv. www.alldatasheet.com
- v. MATLAB/SIMULINK.
- vi. Electronics Work bench.
- vii. MULTISIM.
- viii. Scilab.
 - ix. Caspoc.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S. Z. Shyara, Sr. Lecturer, A.V.P.T.I. Rajkot
- Prof R. D. Sathvara, Sr. Lecturer, G.P. Gandhinagar
- **Prof. A. M. Patel**, Sr. Lecturer, G.P. Palanpur
- **Prof. H. P. Patel**, Lecturer, G.P. Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. (Mrs.) C.S. Rajeshwari, Professor and Head, Dept. of Electrical and Electronics Engineering,
- Dr. Joshua Earnest, Professor, Dept. of Electrical and Electronics Engineering,