GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Physical, Analytical & Inorganic Chemistry (Code: 3310501)

Diploma Programmes in which this course is offered	Semester in which offered
Chemical Engineering	First Semester

1. RATIONALE

Swift progress in the study of external universe lead to the separation of Chemistry as a special branch of natural science. Chemical changes are always associated with a number of diversified physical changes. Physical chemistry uses the theoretical principles and experimental techniques to investigate the Chemical transformations and Physical changes accompanying them. Many industrial processes that have been developed are the results of Physico-Chemical investigations which are increasingly employed byorganic, in-organic and analytical chemists. Inorganic chemistry explains chemistry of qualitative analysis, while analytical chemistry deals with the quantitative analysis. Hence study of physical & Analytical chemistry in engineering branch has become essential. This being a core course provides suitable background for Chemical Engg. Technicians for understanding their respective courses and will make them suitable for their job in industries. Thus good foundation in Chemistry will help the students in their self development, to cope up with continuous flow of innovations.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency.

i. Apply basic concept of physical analytical and inorganic chemistry in chemical engineering application

3. TEACHING AND EXAMINATION SCHEME

Teac	ching Sch	eme	Total	Examination Scheme				
((In Hours)		Credits (L+T+P)	Theory Marks		Practica	l Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. **DETAILED COURSE CONTENTS**

Unit	Major Learning Outcomes	Topics and Sub-topics					
Unit – I	1.1 Explain the	1.1	Physical properties of liquid				
	different Physical	1.2	Types of physical properties and				
PROPERTIES	properties of liquids.	1.2	Characteristics of each property.				
OF	properties or figures.	1.3	Definition of the				
LIQUID	1.2 Describe the	1.5	Surface tension, Parachor,				
			Refractive index, Molar refraction,				
	properties of liquids.		Specific refraction, Viscosity.				
		1.4	Surface tension and viscosity				
	1.3 Different use to	1.5	Drop pipette method (Stalagmometer) to				
	determine the	1.5	determine the Surface tension.				
	properties of liquids	1.6	Ostwald's viscometer to				
		1.0					
		1.7	determine viscosity of liquids.				
		1.7	Refractometer to				
	21 5 1:	2.1	determine refractive Index of liquid.				
	2.1 Explain the	2.1	Define the terms:				
Unit– II	different reactions &		2.1.1 Rate of reaction				
	kinetics of reaction.		2.1.2 Specific reaction rate				
CHEMICAL			2.1.3 Velocity constant				
KINETICS	2.2 Describe about	2.2	Molecularity and order of reaction				
	order of reaction	2.3	Definition the terms:				
	order of reaction		2.3.1First order reaction				
	2.3 List the of		2.3.2 Half concentration				
			period				
	factors affecting the	2.4	Derivation equation for first order reaction.				
	rate of reaction.	2.5	Derivation of equation for second order reaction.				
	2.4 Solve problems	2.6 Half life period for first & second order					
		reaction.					
		2.7	Problems related chemical kinetics.				
Unit– III	3.1 Explain	3.1	System and surroundings, Types of				
	the different types of		System and suitable illustrations				
CHEMICAL	processes.	3.2 Thermodynamic property- extensive					
THERMO	F		and intensive				
DYNAMICS	3.2Explain	3.3	First law of thermodynamics.				
DIMANICS	thermodynamic	3.4	Function, Internal energy, Enthalpy				
	terms like- System,	3.5	Rule of assigning sign to work				
	Surrounding etc.		done(W) and heat transferred (Q) as				
	Surrounding etc.		positive and negative.				
	3.3 Explain the laws	3.6	Molar heat capacity- at constant				
	of Chemical		volume (Cv) and at Constant				
	Thermodynamics.		pressure (Cp).				
	Thermodynamics.		the relationship $Cp - Cv = R$				
		3.7	Adiabatic change, Isothermal				
	3.4 State Hess's law	3.7	change, Reversible process,				
	& its application.		Irreversible process				
		3.8	Derivation equation for Adiabatic				
	3.5 Differentiate	3.0	Expansion of an Ideal gas.				
	between Exothermic		$PV^{\gamma} = Constant$				
	& endothermic of	2.0					
	reactions	3.9	Second law of thermodynamics				
		3.10	Aspects of thermo-chemistry &				
		2 1 1	Phenomenon of heat of reaction.				
		3.11	Types of heat of reactions –				
			Exothermic and endothermic				
			processes with examples				

Unit	Major Learning Outcomes	Topics and Sub-topics		
	Outcomes	3.12 State Hess's law of constant heat		
		Summation.		
		3.13 Problems applying Hess's law.		
Unit-IV	4.1 Explain the	4.1 Basic Concepts: Common ion		
C124 2 Y	concept of solubility	Effect, Solubility		
BASIC	product and ionic	Product, Ionic product,		
CONCEPTS OF	product and its	Salt hydrolysis		
CHEMICAL	application in	4.2 State conditions for precipitation		
ANALYSIS	inorganic analysis.	Considering Ip and Ksp		
		4.3 Application of H ₂ S and NH ₄ CL in		
	4.2 Explain the	inorganic qualitative analysis		
	basic concepts of	4.4 Volumetric analysis		
	volumetric analysis.	4.4.1 Acid-base titration		
		4.4.2 Complex metric titration		
	4.3 Describe basic	4.4.3 Oxidation-reduction titration		
	concepts of	4.4.4 Precipitation titration		
	chromatography.	4.5 Chromatography		
		4.5.1 Classification of chromatography		
	4.4 Use	4.5.2 (a) Paper chromatography		
	chromatograph	(b) Gas Chromatography		
T124 X7	analysis.	5.1 Adapartian Adapartata		
Unit– V	5.1 Explain basic	5.1 Adsorption, Adsorbate, Definition of		
SURFACE	concepts of colloidal	Adsorbent		
CHEMISTRY	5.0 Describe the	5.2 Classification of adsorption: Physical		
CHEWISTKI	5.2 Describe the	adsorption and Chemisorption		
	preparation, properties of sol.	5.3 Types of solution: True solution,		
	properties of sof.	Suspension and colloidal solution		
	5.3 Describe	5.4 Classification of colloidal solution		
	about the	5.5Lyophobic and		
	purification of sol	Lyophilic sol.		
	1 -	5.6 Methods of preparing colloidal		
	solutions.	Solutions.		
	5.4 Explain of	5.6.1 Condensation methods		
	Emulsion	5.6.2 Dispersion methods		
		5.7 Purification of colloidal solutions		
	& its types.	5.7.1 Dialysis		
	5.5 Explain the	5.7.2 Ultra filtration 5.8 Important properties of colloidal		
	Concepts of	5.8 Important properties of colloidal solution and explain the following		
	Adsorption &	in details		
	•	5.8.1 Scattering of light		
	related terms.	(Tyndall effect)		
	5.6 Use basis	5.8.2 Brownian movement		
	concepts of colloids	5.8.3 Electrophoresis		
	in different	5.8.4 Electro osmosis		
	application such as	5.9 Emulsion & Gels.		
	smoke precipitation	5.7.1 Types of emulsion		
	etc.	5.7.2 Cleansing action of soap		
		5.10 Application of colloids		
		Smoke precipitation, Purification of water,		
		Sewage treatment, Leather tanning etc.		

Unit	Major Learning	Topics and Sub-topics		
TT 14 T7T	Outcomes	<i>(</i> 1	D.C. d. N. H. J. J. B. C.	
Unit– VI	6.1 Explain basic	6.1	Defintion the term` Electrode' the Types of	
	concepts of	6.2	Electrodes Distinction among the	
	electrometric	6.2	Distinction among the:	
ELECTROMETRIC			Inert electrode, Working electrode &	
METHODS OF	6.2 Explain of		Reference electrode; with suitable	
ANALYSIS	construction &		Illustrations.	
	Working of	6.2	Company of the Warting of the Company	
	electrochemical	6.3	Construction & Working of reference	
	cells.		electrode:	
	cens.		6.3.1 Hydrogen electrode	
	6.3 Describe		6.3.2 Calomel electrode	
			6.3.3 Quinhydrone electrode	
	about pH metry		6.3.4 Glass electrode	
	&		6.3.5 Ag/ Agcl/ Kcl electrode	
	Potentiometry		и оп	
	titrations.	6.4	pH & pOH, give their	
			relationship	
	6.4 Describe		6.4.1 Methods used to determine p ^H	
	Various aspects of		of given solution by—	
	conductometery &		- p H paper,	
	Kohlrausch Law of		- p meter &	
	independent		 - Ûniversal indicator methods. 	
	Migration of ions.		6.4.2 Problem to ascertain n ^H and	
			O.H. Problem to ascertain p and p	
		6.5	p ^H metry titration	
		6.6	Potentiometry titration.	
		6.7	Various aspects of conductometric titration	
			1	
		6.8	Kohlrausch Law of independent	
			Migration of ions.	
Unit- VII	7.1 Define the	7.1	Different methods of	
	terms: Solute,		expressing concentration.	
PREPARATION OF			i) Weight/Weight method (W/W)	
STANDARD	Solvent and		ii) Weight/Volume method (W/V)	
SOLUTION	Solution.		7.1.1 Types of W/W methods	
			-Molality (M),	
	7.2 Explain different		-Mole fraction (X),	
	methods of		-Parts per million (PPM)	
	expressing		7.1.2 Different types of W/V	
	concentration with		Methods.	
	examples.		i) gms/liter	
	examples.		ii) Normality (N)	
	7.3 List the types of		iii) Molarity (M) iv)	
	* -		Formality (F)	
	chemicals & its uses.		v) P.P.M. / mg/liter	
	7.4 Describe about		7.1.3 Problems on them.	
	7.4 Describe about			
	primary	7.2	Types of different standards i)	
	& secondary	,	Primary standards	
	standard solutions.		ii) Secondary standards	
			7.2.1 Conditions for primary	
			standard	
			7.2.2 Procedure for	
			preparing primary standard	
	7.5 Describe the		Solution.	
	1.5 Describe the		Dolution.	

Unit	Major Learning Outcomes	Topics and Sub-topics		
	methods of preparation of standard solutions.	7.2.3 Primary standard for standardization of i) Acids ii) Bases iii) FeSo4 7H2O iv) KMnO4 & v) AgNO3.		
INDUSTRIALLY manufacture 8 IMPORTANT and uses of 8		 8.1 Caustic soda-Manufacture and uses 8.2 Ammonia- Manufacture and uses 8.3 Suphuric Acid- Manufacture and uses 8.4 Potassium Dichromate- Manufacture and uses 		

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

T1 *4	This This Too shing		Distribution of Theory Marks			
Unit No.	Unit Title	Teaching Hours	R Level	U Level	A Level	Total
1.	PROPERTIES OF LIQUID	04	03	03	04	10
2.	CHEMICAL KINETICS	05	04	04	02	10
3.	CHEMICAL	08 04	05	04	14	
	THERMODYNAMICS	08	04	03	04	14
4.	BASIC CONCEPTS OF	05	02	03	02	08
	CHEMICAL ANALYSIS	03	02	03	02	00
5.	SURFACE CHEMISTRY	06	03	03	04	10
6.	ELECTROMETRIC METHODS	06	02	02	03	07
	OF ANALYSIS	06	02	02	03	07
7.	PREPARATION OF STANDARD	04	01	02	02	05
	SOLUTION	04	01	02	02	03
8.	INDUSTRIALLY IMPORTANT	04	02	02	02	06
	COMPOUNDS	04	02	02	02	00
	Total	42	20	21	29	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

6. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

S. No.	Unit No.	Exercises/Practical/Experiments			
1	All	about Course & Lab.			
2	7	Acid-Base titration- Strong acid Vs Strong base using Phenolphthalein as an indicator.			
		Prepare of standard solution.			
3	7	Acid-Base titration- Strong acid Vs weak base using methyl orange as an indicator.			
4	1	Determine viscosity by Oswald's Viscometer.			
5	1	Determine f surface tension by Stalagmometer.			
6	1	Determine Refractive Index Using Abbes Refractometer.			
7	6	Find out pH value by:			
		Universal indicator methodpH paperpH meter			
8	6	Determine the amount of HCl in the given solution by using NaOH solution by pH metrically			
9	4,6,7	Redox titration			
10	6&7	Titrate NaCl AgNO3 Potentiometrically and explain the nature of graph			
11	6&7	Titrate HCl NaOH by conductometer and explain nature of graph			
12	2&4	Determine the first order reaction.			
13	2&4	Determine the second order reaction.			
	Note:	Minimum Ten Experiments should be performed by the students from the above given list.OR any Other experiments related to above topics			

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Teacher guided self learning activities.
- Course/topic based internet based assignments.
- •Library survey regarding Engineering Material used in different industries.
- •Industrial Visits of one or Two Industries.
- •Quiz & Brain storming session related to Fuel properties & Utilization of fuel for different purposes.
- Sampling & Testing of water collected from different places.
- These could be individual or group-based.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Title of Books	Author	Publication
1	Essentials of Physical chemistry	Bahl & Tuli	S. Chand & Co. New Delhi.
2	Principals of Physical chemistry	Puri, Sharma & Pathania	S.N. Chand & Co. Jalandhar
3	Basic Concepts of Analytical Chemistry	S. M. Khopkar	New Age Publication, New Delhi
4	Physical Chemistry	N. B. Singh, Shiva Saran Das & A. K. Singh	New Age Publication, New Delhi
5	Analytical Chemistry Problems & Solution	S. M. Khopkar	New Age Publication, New Delhi
6	Vogel's textbook of quantitative Chemical analysis (including instrumental methods)	Jeffery G.H	E.L.B.S. With Longman
7	Textbook of Physical Chemistry	Glasston & Samuel	Macmillan New Delhi

B.List of Major Equipment/ Instrument

- ph- Meter
- Ostwald's Viscometer
- Potentiometer
- Conductometer
- Stalagmometer
- Glass wares

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Polytechnic Faculty Members

- Prof. J. C. Patel, I/C. Head, Dept. of Science & Humanities, Dr. S.& S.S. Ghandhy College of Engineering, Surat
- •Prof. Dr. P. R. Patel, Head, Dept. of Science & Humanities, N.G. Patel Polytechnic, Bardoli
- •Prof. S. A. Nimakwala, I/C Head, Dept. of Science & Humanities, Shri. K.J. Polytechnic, Bharuch.
- •Prof. R. R. Patel, I/C Head, Dept. of Science & Humanities, G.P. Himmatnagar

NITTTR Bhopal Co-ordinator

• Dr. Anju Rawlley Professor, Dept of Applied Science, NITTTR, Bhopal