GUJARAT TECHNOLOGICAL UNIVERSITY

Diploma Engineering – SEMESTER – 1 (OLD) EXAMINATION – Summer-2023

Subject Code: 3300001 Subject Name: BASIC MATHEMATICS Time: 10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable and communication aids are strictly prohibited.
- 5. Use of non-programmable scientific calculator is permitted.
- 6. English version is authentic.

Q.1 Fill in the blanks using appropriate choice from the given options.

આપેલ વિકલ્પોમાંથી યોગ્ય પસંદગીનો ઉપયોગ કરીને ખાલી જગ્યાઓ ભરો.

માપલ	विडल्पामाया याज्य	पत्तरगाणा ७५५।ग	Stiel offer boundary	
1.	$Log_{5}(125) =$			
	A. 2	B. 3	C. 5	D. 25
۹.	$Log_{5}(125) =$			
	Log ₅ (125) = અ. 2	બ. ૩	5 . 5	S. 25
2.	if $A^X = B^Y$ then	$\left(\frac{x}{y}\right) = $		
		B. $log\left(\frac{A}{B}\right)$	C. $\frac{\log A}{\log B}$	D. $log\left(\frac{B}{A}\right)$
૨.	$\Re A^{X} = B^{Y} dl \left(\frac{x}{y}\right)$) =		
	અ. ^{log A} log B	બ. $log\left(\frac{A}{B}\right)$	$C. \frac{\log A}{\log B}$	$5.log\left(\frac{B}{A}\right)$
3.	$log_{10}(0.001)=$ A.4	B4	C. 3	D3
З.	$\log_{10}(0.001) =$			
• •	અ. 4	બ4	5.3	53
4.	$\begin{vmatrix} 2 & 3 \\ -5 & 7 \end{vmatrix} =$	·		
	A.14	B. 21	C. 29	D19
۲.	$\begin{vmatrix} 2 & 3 \\ -5 & 7 \end{vmatrix} =$	·•		
	અ.14	બ.21	5.29	5.19
5.	Order of the ma	$ \text{trix} _{1}^{2} \begin{array}{c} 1 \\ 1 \end{array} \begin{array}{c} 2 \\ 1 \end{array} \begin{array}{c} 1 \\ 1 \end{array} $		
	A.2×3	B. 3×2	C. 2×2	D.none
પ.	મેટ્રિક્સનો ક્રમ	$\begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$		
	અ. 2×3	બ.3×2	5.2×2	ડ.કોઇ નહીં
6.	if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ the	en A ^{T=}		
	A. $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$	B. $\begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$	$C.\begin{bmatrix} -1 & 3\\ 2 & -4 \end{bmatrix}$	D. $\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$
F .	$\Re A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $	1 A ^{T=}	_	
11.000	$\begin{bmatrix} 1 & 3 \\ 3 \end{bmatrix}$	બ. $\begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$	$s \begin{bmatrix} -1 & 3 \\ 2 & -4 \end{bmatrix}$	$5 \begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$
	[2 4]	"L-2 4 J	-12 -4]	13 -11
7.	If $A = \begin{bmatrix} stab \\ -cos\theta \end{bmatrix}$	$\frac{\cos\theta}{\sin\theta}$ then $A^{-1}=$	·	

14

Date: 17-08-2023

Total Marks: 70

	A.A ^T	B.I	C.0	D.A
9 .	$\Re A = \begin{bmatrix} sin\theta \\ cos\theta \end{bmatrix}$	$\frac{\cos\theta}{\sin\theta}$] dl A ⁻¹ =	·	
	ચ. A ^T	બા	\$. O	S.A
8.	$sin^{-l}\left(cos\frac{\pi}{6}\right) =$			
0.	_ (0/	$B.\frac{\pi}{2}$		
	$A.\frac{\pi}{6}$	3	С.П	D.2π
٤.	$sin^{-1}\left(cos\frac{\pi}{6}\right) =$,		
	$\sin^{-1}\left(\cos\frac{\pi}{6}\right) = $ $\Im_{-1} \cdot \frac{\pi}{6}$	બ. ≞	£.π	5.2π
9.		3		
9.	$\frac{2\pi}{9}$ radian=	B.80°	C 209	D 509
,	A.40°		C.20°	D.50°
Ŀ.	<u></u> રેડિયન =			
	અ. 40°	બ.80°	\$.20°	S.50°
10.	$sin\left(\frac{\pi}{2}-\theta\right) =$	i		
	A.cos0	B.cos0	C.sin0	Dsinθ
۹٥.	$sin\left(\frac{\pi}{2}-\theta\right) =$			
	અcosθ	બ.cosθ	\$.sinθ	Ssin0
11.	$\tan^2\theta + 1 =$	2-	- 2-	2.
	$A.\cos^2\theta$	B. $\cot^2\theta$	C. $\sec^2\theta$	D. $sin^2\theta$
99.			2	a . 2.
10	અ. cos ² θ	બ.cot ² θ	5.sec ² θ	$S.sin^2\theta$
12.	A.20T	B. 30T	with radius 3 cm and 5 cm C. 48∏	D. 720π.
92			કરનો વક્ર સપાટી વિસ્તાર	
I C.	अ. 20T	બ.30T	5.48∏	5.720
13.				5.720
10.	A.100	Sq.centi B. 1000	C. 10000	D. 10
٩3		ચોરસ સેન્ટિંગ		
				5.10
14.	Volume of sphe	re having radius r =_	· · ·	
	$A.\frac{3}{4}\pi r^3$	બ.1000 re having radius r =_ B. $\frac{\pi}{3}$ r ³	C. $\frac{4}{7}\pi r^{3}$	D. $4\pi r^{2}$
૧૪.		ત્રિજ્યા ધરાવતા	. ગોળાના જથ્થા.	
	r = અ. $\frac{3}{4} \pi r^3$	બ. 1 /3 r ³	$5.\frac{4}{2}\pi r^{3}$	$5.4 \pi r^2$
	4	3	3	

(A) Attempt any two. કોઇપણ બેના જવાબ આપો.

Q.2

- 1.
- ۹.
- 2.
- ૨.
- 3.
- З.
- Prove that: $log_2(x + 5) + log_2(x 2) = 3$ $\aleph I[\Box(d \pm 3\ell): log_2(x + 5) + log_2(x 2) = 3$ Prove that: $log\left(\frac{15}{7}\right) log\left(\frac{25}{4}\right) + log\left(\frac{35}{12}\right) = 0$ $\aleph I[\Box(d \pm 3\ell): log\left(\frac{15}{7}\right) log\left(\frac{25}{4}\right) + log\left(\frac{35}{12}\right) = 0$ A circle is made from 176cm long wire. Find the area of the circle. $\Im \pm qdg(176cm \in I \subseteq 176cm \in I \subseteq 176cm \in 176cm \in 176cm = 176$ 4. $(\pi = \frac{22}{7})$

૪. ૨૨ સેમી લંબાઈના ધનમાંથી એક સેમી ત્રિજ્યાના કેટલા ગોળાકાર બોલ બનાવી શકાય? $(\Pi = \frac{22}{7})$ (B) Attempt any two. કોઇપણ બેના જવાબ આપો. 08

06

2/5

1. If
$$log\left(\frac{a+b}{3}\right) = \frac{1}{2}(log a + log b)$$
 then prove that $\frac{a}{b} + \frac{b}{a} = 7$

A.
$$\Re \log\left(\frac{a+b}{3}\right) = \frac{1}{2} (\log a + \log b)$$
 તો સાબિત કરો કે $\frac{a}{b} + \frac{b}{a} = 7$

2. Prove that:
$$23 \log(\frac{10}{9}) - 6 \log(\frac{25}{24}) + 10 \log(\frac{81}{80}) = \log 10$$

- સાબિત કરો કે: $23 \log(\frac{10}{9}) 6 \log(\frac{25}{24}) + 10 \log(\frac{81}{80}) = \log 10$ 2.
- 3. How much paper is required to prepare 20 cone shaped caps of radius 14 cm of base and height 48cm?
- 14 સેમી ત્રિજ્યાની 20 શંકુ આકારની ટોપીઓ તૈયાર કરવા માટે કેટલા કાગળની જરૂર છે? **3**. 4.
- The Total surface of a cylinder is 1386cm². If the curved surface area of this cylinder is 9th part of its total surface area then find radius and height of the cylinder.
- સિલિન્ડરની કુલ સપાટી 1386cm² છે. જો આ સિલિન્ડરનો વક્ર સપાટી વિસ્તાર તેના કુલ ۲. સપાટી વિસ્તારનો 9 મો ભાગ હોય તો સિલિન્ડરની ત્રિજ્યા અને ઊંચાઇ શોધો.

1.

(A) Attempt any two. કોઇપણ બેના જવાબ આપો 1.

- ۹.
- 2.
- empt any two. કોઈપણ બેના જવાબ આપો 06 If $\begin{vmatrix} x 1 & 2 & 1 \\ x & 1 & x + 1 \\ 1 & 1 & 0 \end{vmatrix}$ = 4 then find X. $\Re \begin{vmatrix} x 1 & 2 & 1 \\ x & 1 & x + 1 \\ 1 & 1 & 0 \end{vmatrix}$ = 4 પછી શોધો X. If $A = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 3 + x & 5 y \\ 6 z & 9 + 2w \end{bmatrix}$ are given matrix and if A = B, then find the valued of x, y, z and w. $\Re A = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$ $\Re \Theta B = \begin{bmatrix} 3 + x & 5 y \\ 6 z & 9 + 2w \end{bmatrix}$ $\Re (A = B)$ $\Re A = B$ $\Re (A)$ A = B $\Re (A)$ x, y, z $\Re \Theta$ w $\Im (A) = \begin{bmatrix} 2 & -1 \\ 3 & 5 \end{bmatrix}$ $\Re \Theta = \begin{bmatrix} 3 + x & 5 y \\ 6 z & 9 + 2w \end{bmatrix}$ $\Re (A)$ 2.

3. If
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$, then find (i) $3A - 2B$ (ii) $A + B$.

3.
$$\Re A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$$
 $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 5 \\ 1 & 1 \end{bmatrix}$, $\Re H = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, \Re

Using matrices solve 2x + 3y = 1 and y - 4x = 2. 3.

06

npt any two. If $A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$ then verify the following. (i) $(A+B)^{T} = A^{T} + B^{T}$ (ii) $(AB)^{T} = B^{T}A^{T}$ (iii) $A + A^{T}$ is a symmetric matrix. $\Re A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$ $\Im \Re B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$ $\Im \Re A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$ $\Im \Re B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$ $\Im \Re A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$ $\Im \Re B = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 4 & 3 \\ 2 & 1 & 5 \end{bmatrix}$ $\Im \Re A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ the find A^{-1} . If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ the find A^{-1} . If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$, the show that A^{2} - 4A - 5I = 0. ۹. 2. ૨. 3.

3.
$$\Re A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, $\Im A^2 - 4A - 5I = 0$.

3/5

Find the solution of the equations using matrix x + y + z = 3, x + 2y + z = 2, 4. 4x - y - z = 7.મેટ્રિક્સ x + y + z = 3 ,x + 2y + z = 2 નો ઉપયોગ કરીને સમીકરણોનો ઉકેલ શોધો, ۲. 4x - y - z = 7. Q.4 કોઇપણ બેના જવાબ આપો. 06 (A) Attempt any two. Prove that $\cos\left(\frac{\pi}{13}\right) + \cos\left(\frac{5\pi}{13}\right) + \cos\left(\frac{8\pi}{13}\right) + \cos\left(\frac{12\pi}{13}\right) = 0.$ સાબિત કરો કે: $\cos\left(\frac{\pi}{13}\right) + \cos\left(\frac{5\pi}{13}\right) + \cos\left(\frac{8\pi}{13}\right) + \cos\left(\frac{12\pi}{13}\right) = 0.$ 1. ۹. For a cyclic quadrilateral ABCD, prove that $\cos A + \cos B + \cos C + \cos D = 0$ 2. ચક્રીય ચતુર્ભુજ ABCD માટે, સાબિત કરો કે $\cos A + \cos B + \cos C + \cos D = 0$ 2. 직용[십 식((() ABCD 412, this to 5 cos 12 cos 3. З. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 \\ 2 & -3 \end{bmatrix}$, then prove that $(A+B)^T = A^T + B^T$. $\Re A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 1 \\ 2 & -3 \end{bmatrix}$, d) def $(A+B)^T = A^T + B^T$ thus the set of 4. ۲. કોઇપણ બેના જવાબ આપો. 08 (B) Attempt any two. Prove that $\cos 35^\circ + \cos 85^\circ + \cos 155^\circ = 0$. સાબિત કરો કે cos 35° + cos 85° + cos 155° = 0. ۹. $tan^{-1}\left(\frac{2}{3}\right) = tan^{-1}\left(\frac{12}{5}\right)$ 2. $2\tan^{-l}\left(\frac{2}{3}\right) = \tan^{-l}\left(\frac{12}{5}\right)$ ર. Draw the graph of $y = \cos x$ ($0 \le x \le T$) 3. y = cos x (0≤ x ≤ π) નો ગ્રાફ દોરો. З. Obtain solution of equation using matrix method. 4. 3x + 2y = 7,11x - 4y = 3.મેટ્રિક્સ પધ્દુતિનો ઉપયોગ કરીને સમીકરણનો ઉકેલ મેળવો. ۲. 3x + 2y = 7,11x - 4y = 3.Q.5 06 કોઇપણ બેના જવાબ આપો (A) Attempt any two. If x = (1, 2, 3) and y = (2, 3, 4), then find (i) x * y and (ii) $(x ^ y)$. 1. જો x= (1, 2, 3) અને y = (2, 3, 4), તો પછી (i) x * y અને (ii) (x ^ y) શોધો. ۹. If $\overline{a} = 3i - j - 4k$, $\overline{b} = -2i + 4j - 3k$ and $\overline{c} = i + 2j - k$, then find the direction cosines of the 2. vector 3a - 2b + 4c. જો \bar{a} = 3i – j – 4k, \bar{b} = -2i + 4j – 3k અને \bar{c} = i + 2 j – k, તો વેકટર 3a - 2b + 4c ની દિશા 2. કોસાઇન શોધો. For what value of X the vectors 2i - 3j + 5k and xi - 6j - 8k are perpendicular to each 3. other? X ની કઈ કિંમત માટે વેક્ટર 2i – 3j + 5k અને xi – 6j – 8k એકબીજાને લંબરુપ છે? 3. Simplify: $(10i + 2j + 3k)^*[(i - 2j + 2k) \times (3i - 2j - 2K)].$ 4. સરળ બનાવો: $(10i + 2j + 3k)*[(i - 2j + 2k) \times (3i - 2j - 2K)].$ ۲. કોઇપણ બેના જવાબ આપો 08 (B) Attempt any two. Show that the angle between the vectors i + 2j and i + j + 3k is $\sin^{-1}\left(\sqrt{\frac{46}{55}}\right)$. 1. બતાવો કે i + 2j અને i + j + 3k વેક્ટર વચ્ચેનો ખૂણો $\sin^{-1}\left(\sqrt{\frac{46}{55}}\right)$ છે. ۹.

A particle is displaced from point (0, 1, -2) to the point (5, 1, 2) under the effect of 2. constant forces (1, 2, 3) and (3, 1, 1) the find total work done.

4/5

- એક કણ સ્થિર દળો (1,2,3) અને (3,1,1) શોધની અસર હેઠળ બિંદુ (0, 1, -2) થી બિંદુ (5, 1, 2) પર વિસ્થાપિત થાય છે. કુલ કામ કર્યું. 2.
- Find the moment about the point (4, 0, 1) of the forces 2i + j 3k and 2i 2j + k acting 3. through the point (-1,3,-2).
- 2i + j 3k અને 2i 2j + k દળોના બિંદુ (4, 0, 1) બિંદુ (-1, 3, -2) દ્વારા કાર્ય કરે છે તે વિશેની 3. ક્ષણ શોધો.
- 4.
- $\overline{x} = 3i 2k \text{ and } \overline{y} = 5i + 2j 4k \text{ are given then find } (\overline{x} \overline{y}) \times (\overline{x} * \overline{y})$ $\overline{x} = 3i 2k$ અને $\overline{y} = 5i + 2j 4k$ આપેલ છે પછી શોધો $(\overline{x} \overline{y}) \times (\overline{x} * \overline{y})$ ۲.

************ Best Wishes *******